1. Jones A.W. Altered ion transport in vascular smooth muscle from spontaneously hypertensive rats. Influence of aldosterone, norepinephrine and angiotensin // Circ. Res. - 1973. - Vol. 33, № 5. - P. 563-572.
2. Postnov Yu.V., Orlov S.N., Gulak P.V., Shevchenko A.S. Altered permeability of the erythrocyte membrane for sodium and potassium in spontaneously hypertensive rats // Pflugers Archiv. - 1976. - Vol. 365, № 2-3. - P. 257-263.
3. Postnov Yu.V., Orlov S.N., Shevchenko A.S., Adler A.M. Altered sodium permeability, calcium binding and Na-K-ATPase activity in the red blood cell membrane in essential hypertension // Pflugers Archiv. - 1977. - Vol. 371, № 3. - P. 263-269.
4. Postnov Yu.V., Orlov S.N. Ion transport across plasma membrane in primary hypertension // Physiol. Rev. - 1985. - Vol. 65, № 4. - P. 904-945.
5. Orlov S.N., Adragna N., Adarichev V.A., Hamet P. Genetic and biochemical determinants of abnormal monovalent ion transport in primary hypertension // Am. J. Physiol. - 1999. - Vol. 276, № 3, Pt. 1. - P. C511-C536.
6. Mead P.A., Wilkinson R., Thomas T.H. Na/Li countertransport abnormalities in type 1 diabetes with and without nephropathy are familial // Diabetes Care. - 2001. - Vol. 24, № 3. - P. 527-532.
7. Zerbini G., Gabellini D., Ruggieri D., Maestroni A. Increased sodium-lithium countertransport activity: a cellular dysfunction common to essential hypertension and diabetic nephropathy // J. Am. Soc. Nephrol. - 2004. - Vol. 15, Suppl. 1. - P. S81-S84.
8. Orlov S.N., Tremblay J., Hamet P. NKCC1 and hypertension: a novel therapeutic target involved in regulation of vascular tone and renal function // Curr. Opin. Nephrol. Hypert. - 2010. - Vol. 19, № 2. - P. 163-168.
9. Sarkadi B., Alifimoff J.K., Gunn R.B., Tosteson D.C. Kinetics and stoichiometry of Na-dependent Li transport in human red blood cells // J. Gen. Physiol. - 1978. - Vol. 72, № 2. - P. 249-265.
10. Orlov S.N., Postnov I.Yu., Pokudin N.I., Kukharenko V.Yu., Postnov Yu.V. Na+/H+ exchange and other ion transport systems in erythrocytes of essential hypertensives and spontaneously hypertensive rats // J. Hypertens. - 1989. - Vol. 7, № 10. - P. 781-788.
11. Canessa M.L., Adragna N., Solomon H.S., Connoly T.M., Tosteson D.C. Increased sodium-lithium countertransport in red cells of patients with essential hypertension // N. Engl. J. Med. - 1980. - Vol. 302, № 14. - P. 772-776.
12. Hardman T.C., Lant A.F. Controversies surrounding erythrocyte sodium-lithium countertransport // J. Hypertens. - 1996. - Vol. 14, № 6. - P. 695-703.
13. Orlov S.N. Hypertension // In: Red cell membrane transport in health and disease / Ed. by I. Bernhardt, J.C. Ellory. - Berlin: Springer, 2003. - P. 587-602.
14. Huot S.J., Aronson P.S. Na+-H+ exchanger and its role in essential hypertension and diabetes mellitus // Diabetes Care. - 1991. - Vol. 14, № 6. - P. 521-535.
15. Rutherford P.A., Thomas T.H., Wilkinson R. Erythrocyte sodium-lithium countertransport: clinically useful, pathophysiologically instructive or just phenomenology? // Clin. Sci. - 1992. - Vol. 82, № 4. - P. 341-352.
16. Baraban J.M., Worley P.F., Snyder S.H. Second messenger systems and psycoactive drug focus on the phosphoinositide system and lithium // Am. J. Psychiatry. - 1989. - Vol. 146, № 10. - P. 1251-1260.
17. Lenox R.H., Manji H.K. Lithium // In: Textbook of psychopharmacology / Ed. by A.F. Schatzberg, C.B. Nemeroff. - Washington DC: American Psychiatric Press, 1995. - P. 303-349.
18. Орлов С.Н., Покудин Н.И., Котелевцев Ю.В. Калиевые каналы, анионный транспорт и активость Na+-насосы мембраны эритроцитов: три различных механизма регуляции внутриклеточным кальцием // Биохимия. - 1987. - T. 52. - C. 1373-1386.
19. Shoemaker D.G., Bender C.A., Gunn R.B. Sodium-phosphate cotransport in human red blood cells // J. Gen. Physiol. - 1988. - Vol. 92, № 4. - P. 449-474.
20. Люсов В.А., Постнов И.Ю., Орлов С.Н., Ряжский Г.Г. Различия в скорости Na/Li-противотранспорта в мембране эритроцитов при гипертонической болезни и почечной гипертензии // Кардиология. - 1983. - T. 23, № 8. - С. 24-26.
21. Elmariah S., Gunn R.B. Kinetic evidence that the Na-PO4 cotransporter is the molecular mechanism for Na/Li exchange in human red blood cells // Am. J. Physiol. Cell. Physiol. - 2003. - Vol. 285, № 2. - P. C446-C456.
22. Кобаль A.M., Орлов С.Н., Покудин Н.И., Кухаренко В.Ю., Постнов Ю.В. Модификация ион-транспортирующих систем эритроцитов человека при хранении // Бюлл. эксп. биол. мед. - 1990. - Т. 110. - С. 151-153.
23. Duhm J., Becker B.F. Studies on lithium transport across the red cell membrane. V. On the nature of the Na+ -dependent Li+ countertansport system of mammalian erythrocytes // J. Membrane Biol. - 1979. - Vol. 51, № 3-4. - P. 263-286.
24. Thomas T.H., Rutherford P.A., Vareesangthip K., Wilkinson R., West I.C. Erythrocyte membrane thiol proteins associated with changes in the kinetics of Na/Li countertransport: a possible molecular explanation of changes in disease // Eur. J. Clin. Invest. - 1998. - Vol. 28, № 4. - P. 259-265.
25. Kahn A.M. Differences between human red blood cell Na+-Li+ countertransport and renal Na+-H+ exchange // Hypertension. - 1987. - Vol. 9, № 1. - P. 7-12.
26. Орлов С.Н., Кузнецов С.Р., Колосова И.А., Макаров В.Л. Na+/H+ и Na+/Na+ противотранспорт в эритроцитах человека, кролика и крысы: доказательство наличия двух независимых ионтранспортирующих систем // Биохимия. - 1994. - T. 59. - C. 639-647.
27. Orlov S.N., Kuznetsov S.R., Pokudin N.I., Tremblay J., Hamet P. Can we use erythrocytes for the study of the activity of ubiquitous Na+-H+ exchanger (NHE-1) in essential hypertension? // Am. J. Hypertens. - 1998. - Vol. 11, № 7. - P. 774-783.
28. Jennings M.L., Adams-Lackey M., Cook K.W. Absence of significant sodium-hydrogen exchange by rabbit erythrocyte sodium-lithium countertransport // Am. J. Physiol. - 1985. - Vol. 249, № 1, Pt. 1. - P. C63-C68.
29. Zerbini G., Maestroni A., Breviario D., Mangili R., Casari G. Alternative splicing of NHE-1 mediates Na-Li countertransport and associates with activity rate // Diabetes. - 2003. - Vol. 52, № 6. - P. 1511-1518.
30. Murer H., Hernando N., Forster I., Biber J. Proximal tubular phosphate reabsorption: molecular mechanisms // Physiol. Rev. - 2000. - Vol. 80, № 4. - P. 1373-1409.
31. Virkki L.V., Biber J., Murer H., Forster I.C. Phosphate transport: a tale of two solute carrier families // Am. J. Physiol. Renal Physiol. - 2007. - Vol. 293, № 3. - P. F643-F654.
32. Reimer R.J., Edwards R.H. Organic anion transport is the primary function of the SLC17/type I phosphate transport family // Pfluger Arch. Eur. J. Physiol. - 2004. - Vol. 447, № 5. - P. 629-635.
33. Timmer R.T., Gunn R.B. The molecular basis for Na-dependent phosphate transport in human erythrocytes and K562 cells // J. Gen. Physiol. - 2000. - Vol. 116, № 3. - P. 363-378.