1. Morton SU, Quiat D, Seidman JG, et al. Genomic frontiers in congenital heart disease. Nat Rev Cardiol. 2022;19(1):26-42. doi:10.1038/s41569-021-00587-4.
2. Wang J, Luo XJ, Xin YF, et al. Novel GATA6 Mutations Associated with Congenital Ventricular Septal Defect or Tetralogy of Fallot. DNA Cell Biol. 2012;31(11):1610-7. doi:10.1089/dna.2012.1814.
3. Li C, Li X, Pang S, et al. Novel and Functional DNA Sequence Variants within the GATA6 Gene Promoter in Ventricular Septal Defects. Int J Mol Sci. 2014;15(7):12677-87. doi:10.3390/ijms150712677.
4. Byrne A, MacDonald J, Buckley S. Reading, language and memory skills: a comparative longitudinal study of children with Down syndrome and their mainstream peers. Br J Educ Psychol. 2002;72(4):513-29. doi:10.1348/00070990260377497.
5. Fahed AC, Gelb BD, Seidman JG, et al. Genetics of congenital heart disease: the glass half empty. Circ Res. 2013;112:707-20. doi:10.1161/CIRCRESAHA.112.300853.
6. Chen L, Guan J, Wei Q, et al. Potential role of "omics" technique in prenatal diagnosis of congenital heart defects. Clin Chim Acta. 2018;482:185-90. doi:10.1016/j.cca.2018.04.011.
7. Шабалдин А.В., Шмулевич С. А., Чистякова Г. Н. и др. Особенности аллогенных взаимодействий в краткосрочной культуре лимфоцитов супругов, имеющих детей с врожденными пороками сердца или ранние репродуктивные потери. Медицинская иммунология. 2019;21(2):279-92. doi:10.15789/1563-0625-2019-2279-292.
8. Zhang J, Yang J, Han D, et al. Dvl3 polymorphism interacts with life events and pro-inflammatory cytokines to influence major depressive disorder susceptibility. Sci Rep. 2018;8(1):14181. doi:10.1038/s41598-018-31530-2.
9. Polonikov A, Kharchenko A, Bykanova M, et al. Polymorphisms of CYP2C8, CYP2C9 and CYP2C19 and risk of coronary heart disease in Russian population. Gene. 2017;627:451-9. doi:10.1016/j.gene.2017.07.004.
10. Пономаренко И. В. Использование метода Multifactor Dimensionality Reduction (MDR) и его модификаций для анализа ген-генных и генно-средовых взаимодействий при генетико-эпидемиологических исследованиях (обзор). Научные результаты биомедицинских исследований. 2019;5(1):4-21. doi:10.18413/2313-8955-2019-5-1-0-1.
11. Gola D, Mahachie John JM, van Steen K, et al. A roadmap to multifactor dimensionality reduction methods. Brief Bioinform. 2015;17(2):293-308. doi:10.1093/bib/bbv038.
12. Chadha S, Behl T, Bungau S, et al. Mechanistic insights into the role of pyroptosis in rheumatoid arthritis. Curr Res Transl Med. 2020;68(4):151-8. doi:10.1016/j.retram.2020.07.003.
13. Zhang S, Gao Y, Huang J. Interleukin-8 Gene -251 A/T (rs4073) Polymorphism and Coronary Artery Disease Risk: A MetaAnalysis. Med Sci Monit. 2019;25:1645-55. doi:10.12659/MSM.913591.
14. Hu D, Wang H, Huang X, et al. Investigation of association between IL-8 serum levels and IL8 polymorphisms in Chinese patients with sepsis. Gene. 2016;594(1):165-70. doi:10.1016/j.gene.2016.09.024.
15. Wang H, Zhou S, Zhang J, et al. Correlations between TLR polymorphisms and inflammatory bowel disease: a meta-analysis of 49 case-control studies. Immunol Res. 2019;67(1):142-50. doi:10.1007/s12026-018-9061-0.
16. Semlali A, Almutairi M, Rouabhia M, et al. Novel sequence variants in the TLR6 gene associated with advanced breast cancer risk in the Saudi Arabian population. PLoS One. 2018;13(11):e0203376. doi:10.1371/journal.pone.0203376.
17. Kutikhin AG, Ponasenko AV, Khutornaya MV, et al. Association of TLR and TREM-1 gene polymorphisms with atherosclerosis severity in a Russian population. Meta Gene. 2016;9:76-89. doi:10.1016/j.mgene.2016.04.001.
18. Amjadi F, Zandieh Z, Mehdizadeh M, et al. The uterine immunological changes may be responsible for repeated implantation failure. J Reproduct Immunol. 2020;138:103080. doi:10.1016/j.jri.2020.103080.
19. Шабалдин А. В., Цепокина А.В., Шмулевич С.А. и др. Генетические предикторы спорадических врожденных пороков сердца у детей. Молекулярная медицина. 2022;(1). doi:10.29296/249994902022-01-09.
20. Ilyas M, Afzal S, Alghamdi S, et al. Synonymous and nonsynonymous polymorphisms in toll-like receptor 2 (TLR2) gene among complicated measles cases at a tertiary care hospital, Peshawar, Pakistan. Saudi Medical J. 2021;42(11):1229-36. doi:10.15537/smj.2021.42.11.20210515.
21. Sharma S, Garg I, Ashraf MZ. TLR signalling and association of TLR polymorphism with cardiovascular diseases. Vasc Pharmacol. 2016;87:30-7. doi:10.1016/j.vph.2016.10.008.
22. Richard K, Piepenbrink KH, Shirey KA, et al. A mouse model of human TLR4 D299G/T399I SNPs reveals mechanisms of altered LPS and pathogen responses. J Exp Med. 2021;218(2):e20200675. doi:10.1084/jem.20200675.
23. Li L, Yu R, Cai T, et al. Effects of immune cells and cytokines on inflammation and immunosuppression in the tumor microenvironment. Int Immunopharmacol. 2020;88:106939. doi:10.1016/j.intimp.2020.106939.
24. Bhatnager R, Jalthuria J, Sehrawat R, et al. Evaluating the association of TNF-α promoter haplotype with its serum levels and the risk of PCOS: A case control study. Cytokine. 2019;114:86-91. doi:10.1016/j.cyto.2018.11.004.
25. Raedler D, Illi S, Pinto LA, et al. IL10 polymorphisms influence neonatal immune responses, atopic dermatitis, and wheeze at age 3 years. J Allergy Clin Immunol. 2013;131(3):789-96. doi:10.1016/j.jaci.2012.08.008.
26. Nakada TA, Takahashi W, Nakada E, et al. Genetic polymorphisms in sepsis and cardiovascular disease: do similar risk genes suggest similar drug targets? Chest. 2019;155(6):1260-71. doi:10.1016/j.chest.2019.01.003.
27. Ponasenko AV, Khutornaya MV, Kutikhin AG, et al. A GenomicsBased Model for Prediction of Severe Bioprosthetic Mitral Valve Calcification. Int J Mol Sci. 2016;17(9):1385. doi:10.3390/ijms17091385.