Статья
Новые возможности снижения уровня холестерина липопротеидов низкой плотности: сравнительные характеристики PCSK9-таргетной терапии
Распространение сердечно-сосудистых заболеваний носит характер эпидемии, в основе которой лежат нарушения липидного профиля, проявляющиеся гиперхолестеринемией. Многочисленные традиционные фармакологические инструменты снижения содержания холестерина, связанного с липопротеидами низкой плотности, не обеспечивают достижения целевых значений у многих категорий пациентов. Ингибирование пропротеинконвертазы субтилизина/кексина типа 9 (PCSK9) является перспективным направлением в ведении пациентов с атеросклеротическими заболеваниями и включает два основных инструмента — моноклональные антитела (алирокумаб и эволокумаб) и препарат, работающий по технологии малых интерферирующих РНК, инклисиран. Представленный обзор посвящен сравнительному анализу эффективности и безопасности препаратов указанных групп.
1. Roth GA, Mensah GA, Johnson CO, et al. GBD-NHLBI-JACC Global Burden of Cardiovascular Diseases Writing Group. Global Burden of Cardiovascular Diseases and Risk Factors, 1990-2019: Update From the GBD 2019 Study. J Am Coll Cardiol. 2020;76(25):2982-3021. doi:10.1016/j.jacc.2020.11.010.
2. Tsao CW, Aday AW, Almarzooq ZI, et al. Heart Disease and Stroke Statistics-2022 Update: A Report From the American Heart Association. Circulation. 2022;145(8):e153-e639. doi:10.1161/CIR.0000000000001052.
3. Perak AM, Ning H, de Ferranti SD, et al. Long-Term Risk of Atherosclerotic Cardiovascular Disease in US Adults With the Familial Hypercholesterolemia Phenotype. Circulation. 2016;134(1):9-19. doi:10.1161/CIRCULATIONAHA.116.022335.
4. Grundy SM, Stone NJ, Bailey AL, et al. 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ ADA/AGS/APhA/ASPC/NLA/PCNA Guideline on the Management of Blood Cholesterol: Executive Summary: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J Am Coll Cardiol. 2019;73(24):3168-209. doi:10.1016/j.jacc.2018.11.002.
5. Arnett DK, Blumenthal RS, Albert MA, et al. 2019 ACC/AHA Guideline on the Primary Prevention of Cardiovascular Disease: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation. 2019;140(11):e596-e646. doi:10.1161/CIR.0000000000000678.
6. Sabatine MS, Wiviott SD, Im K, et al. Efficacy and Safety of Further Lowering of LowDensity Lipoprotein Cholesterol in Patients Starting With Very Low Levels: A Meta-analysis. JAMA Cardiol. 2018;3(9):823-8. doi:10.1001/jamacardio.2018.2258.
7. Virani SS, Kennedy KF, Akeroyd JM, et al. Variation in lipid-lowering therapy use in patients with low-density lipoprotein cholesterol ≥190 mg/dL: insights from the National Cardiovascular Data Registry-Practice Innovation and Clinical Excellence Registry. Circ Cardiovasc Qual Outcomes. 2018;11:e004652. doi:10.1161/CIRCOUTCOMES.118.004652.
8. Nanna MG, Wang TY, Xiang Q, et al. Sex Differences in the Use of Statins in CommunityPractice. Circ Cardiovasc Qual Outcomes. 2019;12(8):e005562. doi:10.1161/CIRCOUTCOMES.118.005562.
9. Оганов Р. Г., Кухарчук В. В., Арутюнов Г. П. и др. Сохраняющиеся нарушения показателей липидного спектра у пациентов с дислипидемией, получающих статины, в реальной клинической практике в Российской Федерации (российская часть исследования DYSIS). Кардиоваскулярная терапия и профилактика. 2012;11(4):70-8. doi:10.15829/1728-8800-2012-4-70-78.
10. Мешков А. Н., Ершова А. И., Деев А. И. и др. Распределение показателей липидного спектра у мужчин и женщин трудоспособного возраста в Российской Федерации: результаты исследования ЭССЕ-РФ за 2012-2014 гг. Кардиоваскулярная терапия и профилактика. 2017;16(4):62-7. doi:10.15829/1728-8800-2017-4-62-67.
11. Wong ND, Zhao Y, Quek RGW, et al. Residual atherosclerotic cardiovascular disease risk in statin-treated adults: The Multi-Ethnic Study of Atherosclerosis. J Clin Lipidol. 2017;11(5):1223-33. doi:10.1016/j.jacl.2017.06.015.
12. Barter PJ, Rye KA. New Era of Lipid-Lowering Drugs. Pharmacol Rev. 2016;68(2):458-75. doi:10.1124/pr.115.012203.
13. Dong B, Wu M, Li H, et al. Strong induction of PCSK9 gene expression through HNF1alpha and SREBP2: mechanism for the resistance to LDL-cholesterol lowering effect of statins in dyslipidemic hamsters. J Lipid Res. 2010;51(6):1486-95. doi:10.1194/jlr.M003566.
14. Wilson PWF, Polonsky TS, Miedema MD, et al. Systematic review for the 2018 AHA/ ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA guideline on the management of blood cholesterol: a report of the American College of Cardiology/ American Heart Association Task Force on Clinical Practice Guidelines. Circulation. 2019;139:e1144-e1161. doi:10.1016/j.jacc.2018.11.004.
15. Abifadel M, Varret M, Rabès JP, et al. Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat Genet. 2003;34(2):154-6. doi:10.1038/ng1161.
16. Poirier S, Mayer G, Benjannet S, et al. The proprotein convertase PCSK9 induces the degradation of low density lipoprotein receptor (LDLR) and its closest family members VLDLR and ApoER2. J Biol Chem. 2008;283(4):2363-72. doi:10.1074/jbc.M708098200.
17. Zhao Z, Tuakli-Wosornu Y, Lagace TA, et al. Molecular characterization of loss-of-function mutations in PCSK9 and identification of a compound heterozygote. Am J Hum Genet. 2006;79(3):514-23. doi:10.1086/507488.
18. Сohen J, Pertsemlidis A, Kotowski IK, et al. Low LDL cholesterol in individuals of African descent resulting from frequent nonsense mutations in PCSK9. Nat Genet. 2005;37(2):161-5. doi:10.1038/ng1509.
19. Berge KE, Ose L, Leren TP. Missense mutations in the PCSK9 gene are associated with hypocholesterolemia and possibly increased response to statin therapy. Arterioscler Thromb Vasc Biol. 2006;26(5):1094-100. doi:10.1161/01.ATV.0000204337.81286.1c.
20. Kuzmich N, Andresyuk E, Porozov Y, et al. PCSK9 as a Target for Development of a New Generation of Hypolipidemic Drugs. Molecules. 2022;27(2):434. doi:10.3390/molecules27020434.
21. Strom TB, Tveten K, Leren TP. PCSK9 acts as a chaperone for the LDL receptor in the endoplasmic reticulum. Biochem. J. 2014;457:99-105. doi:10.1042/BJ20130930.
22. Norata GD, Tavori H, Pirillo A, et al. Biology of proprotein convertase subtilisin kexin 9: Beyond low-density lipoprotein cholesterol lowering. Cardiovasc. Res. 2016;112:429-42. doi:10.1093/cvr/cvw194.
23. Han B, Eacho PI, Knierman MD, et al. Isolation and characterization of the circulating truncated form of PCSK9. J. Lipid Res. 2014;55:1505-14. doi:10.1194/jlr.M049346.
24. Nishikido T, Ray KK. Non-antibody Approaches to Proprotein Convertase Subtilisin Kexin 9 Inhibition: siRNA, Antisense Oligonucleotides, Adnectins, Vaccination, and New Attempts at Small-Molecule Inhibitors Based on New Discoveries. Front Cardiovasc Med. 2019;5:199. doi:10.3389/fcvm.2018.00199.
25. Pandit S, Wisniewski D, Santoro JC, et al. Functional analysis of sites within PCSK9 responsible for hypercholesterolemia. J Lipid Res. 2008;49(6):1333-43. doi:10.1194/jlr.M800049-JLR200.
26. Ma N, Fan L, Dong Y, et al. New PCSK9 inhibitor miR-552-3p reduces LDL-C via enhancing LDLR in high fat diet-fed mice. Pharmacol Res. 2021;167:105562. doi:10.1016/j.phrs.2021.105562.
27. Xu X, Dong Y, Ma N, et al. MiR-337-3p lowers serum LDL-C level through targeting PCSK9 in hyperlipidemic mice. Metabolism. 2021;119:154768. doi:10.1016/j.metabol.2021.154768.
28. Dong J, He M, Li J, et al. microRNA-483 ameliorates hypercholesterolemia by inhibiting PCSK9 production. JCI Insight. 2020;5(23):e143812. doi:10.1172/jci.insight.143812.
29. Chaudhary R, Garg J, Shah N, et al. PCSK9 inhibitors: A new era of lipid lowering therapy. World J Cardiol. 2017;9(2):76-91. doi:10.4330/wjc.v9.i2.76.
30. Rekić D, Azarov I, Knöchel J, et al. AZD8233 antisense oligonucleotide targeting PCSK9 does not prolong QT interval. Br J Clin Pharmacol. 2022. doi:10.1111/bcp.15425.
31. Gennemark P, Walter K, Clemmensen N, et al. An oral antisense oligonucleotide for PCSK9 inhibition. Sci Transl Med. 2021;13(593). doi:10.1126/scitranslmed.abe9117.
32. Tombling BJ, Lammi C, Lawrence N, et al. Engineered EGF-A Peptides with Improved Affinity for Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9). ACS Chem Biol. 2021;16(2):429-39. doi:10.1021/acschembio.0c00991.
33. Cariou B, Dijk W. EGF-A peptides: A promising strategy for PCSK9 inhibition. Atherosclerosis. 2020;292:204-6. doi:10.1016/j.atherosclerosis.2019.11.010.
34. Valenti V, Noto D, Giammanco A, et al. PCSK9-D374Y mediated LDL-R degradation can be functionally inhibited by EGF-A and truncated EGF-A peptides: An in vitro study. Atherosclerosis. 2020;292:209-14. doi:10.1016/j.atherosclerosis.2019.09.009.
35. Mitchell T, Chao G, Sitkoff D, et al. Pharmacologic profile of the Adnectin BMS-962476, a small protein biologic alternative to PCSK9 antibodies for low-density lipoprotein lowering. J Pharmacol Exp Ther. 2014;350(2):412-24. doi:10.1124/jpet.114.214221.
36. Stein EA, Kasichayanula S, Turner T, et al. LDL cholesterol reduction with BMS-962476, an adnectin inhibitor of PCSK9: results of a single ascending dose study. J Am Coll Cardiol. 2014;63:A1372. doi:10.1016/S0735-1097(14)61372-3.
37. Katzmann JL, Cupido AJ, Laufs U. Gene Therapy Targeting PCSK9. Metabolites. 2022;12(1):70. doi:10.3390/metabo12010070.
38. Wang L, Smith J, Breton C, et al. Meganuclease targeting of PCSK9 in macaque liver leads to stable reduction in serum cholesterol. Nat Biotechnol. 2018;36(8):717-25. doi:10.1038/nbt.4182.
39. Wang L, Breton C, Warzecha CC, et al. Long-term stable reduction of low-density lipoprotein in nonhuman primates following in vivo genome editing of PCSK9. Mol Ther. 2021;29(6):2019-29. doi:10.1016/j.ymthe.2021.02.020.
40. Ye Y, Liu X, Wu N, et al. Efficacy and Safety of Berberine Alone for Several Metabolic Disorders: A Systematic Review and Meta-Analysis of Randomized Clinical Trials. Front Pharmacol. 2021;12:653887. doi:10.3389/fphar.2021.653887.
41. Momtazi-Borojeni AA, Jaafari MR, Badiee A, et al. Therapeutic effect of nanoliposomal PCSK9 vaccine in a mouse model of atherosclerosis. BMC Med. 2019;17(1):223. doi:10.1186/s12916-019-1457-8.
42. Momtazi-Borojeni AA, Jaafari MR, Banach M, et al. Pre-Clinical Evaluation of the Nanoliposomal antiPCSK9 Vaccine in Healthy Non-Human Primates. Vaccines (Basel). 2021;9(7):749. doi:10.3390/vaccines9070749.
43. Ridker PM, Revkin J, Amarenco P, et al. SPIRE Cardiovascular Outcome Investigators. Cardiovascular efficacy and safety of bococizumab in high-risk patients. N Engl J Med. 2017;376:1527-39. doi:10.1056/NEJMoa1701488.
44. Kasichayanula S, Grover A, Emery MG, et al. Clinical Pharmacokinetics and Pharmacodynamics of Evolocumab, a PCSK9 Inhibitor. Clin Pharmacokinet. 2018;57(7):769-79. doi:10.1007/s40262-017-0620-7.
45. Manniello M, Pisano M. Alirocumab (Praluent): First in the New Class of PCSK9 Inhibitors. P T. 2016;41(1):28-53.
46. Langslet G, Hovingh GK, Guyton JR, et al. Regional Variations in Alirocumab Dosing Patterns in Patients with Heterozygous Familial Hypercholesterolemia During an Open-Label Extension Study. Cardiovasc Drugs Ther. 2020;34(4):515-23. doi:10.1007/s10557-020-06984-0.
47. Wasserman SM, Sabatine MS, Koren MJ, et al. Comparison of LDL-C Reduction Using Different Evolocumab Doses and Intervals: Biological Insights and Treatment Implications. J Cardiovasc Pharmacol Ther. 2018;23(5):423-32. doi:10.1177/1074248418774043.
48. East C, Bass K, Mehta A, et al. Alirocumab and Lipid Levels, Inflammatory Biomarkers, Metabolomics, and Safety in Patients Receiving Maintenance Dialysis: The ALIrocumab in DIALysis Study (A Phase 3 Trial to Evaluate the Efficacy and Safety of Biweekly Alirocumab in Patients on a Stable Dialysis Regimen). Kidney Med. 2022;4(7):100483. doi:10.1016/j.xkme.2022.100483.
49. Tuñón J, Steg PG, Bhatt DL, et al. ODYSSEY OUTCOMES Investigators. Effect of alirocumab on major adverse cardiovascular events according to renal function in patients with a recent acute coronary syndrome: prespecified analysis from the ODYSSEY OUTCOMES randomized clinical trial. Eur Heart J. 2020;41(42):4114-23. doi:10.1093/eurheartj/ehaa498.
50. Charytan DM, Sabatine MS, Pedersen TR, et al. FOURIER Steering Committee and Investigators. Efficacy and Safety of Evolocumab in Chronic Kidney Disease in the FOURIER Trial. J Am Coll Cardiol. 2019;73(23):2961-70. doi:10.1016/j.jacc.2019.03.513. Erratum in: J Am Coll Cardiol. 2019;74(8):1162-6.
51. Weinberg MS, Morris KV. Transcriptional gene silencing in humans. Nucleic Acids Res. 2016;44(14):6505-17. doi:10.1093/nar/gkw139.
52. Nishikido T, Ray KK. Inclisiran for the treatment of dyslipidemia. Expert Opinion on Investigational Drugs. 2018;27:287-94. doi:10.1080/13543784.2018.1442435.
53. Pratt AJ, MacRae IJ: The RNA-induced silencing complex: a versatile gene-silencing machine. J Biol Chem. 2009;284(27):17897-901. doi:10.1074/jbc.R900012200.
54. Dyrbuś K, Gąsior M, Penson P, et al. Inclisiran-New hope in the management of lipid disorders? J Clin Lipidol. 2020;14(1):16-27. doi:10.1016/j.jacl.2019.11.001.
55. Brandts J, Ray KK. Small interfering RNA to proprotein convertase subtilisin/kexin type 9: transforming LDL-cholesterol-lowering strategies. Curr Opin Lipidol. 2020;31(4):182-6. doi:10.1097/MOL.0000000000000691.
56. Merćep I, Friščić N, Strikić D, et al. Advantages and Disadvantages of Inclisiran: A Small Interfering Ribonucleic Acid Molecule Targeting PCSK9-A Narrative Review. Cardiovasc Ther. 2022;2022:8129513. doi:10.1155/2022/8129513.
57. Sundararaman SS, Döring Y, van der Vorst EPC. PCSK9: A Multi-Faceted Protein That Is Involved in Cardiovascular Biology. Biomedicines. 2021;9(7):793. doi:10.3390/biomedicines9070793.
58. Pirillo A, Catapano AL. Inclisiran: How Widely and When Should We Use It? Curr Atheroscler Rep. 2022;24(10):803-11. doi:10.1007/s11883-022-01056-0.
59. Da Dalt L, Ruscica M, Bonacina F, et al. PCSK9 deficiency reduces insulin secretion and promotes glucose intolerance: the role of the low-density lipoprotein receptor. Eur Heart J. 2019;40(4):357-68. doi:10.1093/eurheartj/ehy357.
60. Da Dalt L, Castiglioni L, Baragetti A, et al. PCSK9 deficiency rewires heart metabolism and drives heart failure with preserved ejection fraction. Eur Heart J. 2021;42(32):3078-90. doi:10.1093/eurheartj/ehab431
61. Rosenson RS, Hegele RA, Fazio S, et al. The Evolving Future of PCSK9 Inhibitors. J Am Coll Cardiol. 2018;72(3):314-29. doi:10.1016/j.jacc.2018.04.054.
62. Warden BA, Fazio S, Shapiro MD. The PCSK9 revolution: Current status, controversies, and future directions. Trends Cardiovasc Med. 2020;30(3):179-85. doi:10.1016/j.tcm.2019.05.007.
63. Tomlinson B, Chow E, Chan P, et al. An evaluation of the pharmacokinetics of inclisiran in the treatment of atherosclerotic cardiovascular disease. Expert Opin Drug Metab Toxicol. 2021;17(12):1353-61. doi:10.1080/17425255.2021.2029402.
64. Wright RS, Ray KK, Raal FJ, et al. ORION Phase III Investigators. Pooled PatientLevel Analysis of Inclisiran Trials in Patients With Familial Hypercholesterolemia or Atherosclerosis. J Am Coll Cardiol. 2021;77(9):1182-93. doi:10.1016/j.jacc.2020.12.058.
65. Kallend D, Stoekenbroek R, He Y, et al. Pharmacokinetics and pharmacodynamics of inclisiran, a small interfering RNA therapy, in patients with hepatic impairment. J Clin Lipidol. 2022;16(2):208-19. doi:10.1016/j.jacl.2022.01.001.
66. Wright RS, Collins MG, Stoekenbroek RM, et al. Effects of Renal Impairment on the Pharmacokinetics, Efficacy, and Safety of Inclisiran: An Analysis of the ORION-7 and ORION-1 Studies. Mayo Clin Proc. 2020;95(1):77-89. doi:10.1016/j.mayocp.2019.08.021.
67. Fitzgerald K, Frank-Kamenetsky M, Shulga-Morskaya S, et al. Effect of an RNA Interference Drug on the Synthesis of Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) and the Concentration of Serum LDL Cholesterol in Healthy Volunteers: A Randomised, SingleBlind, Placebo-Controlled, Phase 1 Trial. Lancet. 2014;383:60-8. doi:10.1016/S0140-6736(13)61914-5.
68. Ray KK, Landmesser U, Leiter LA, et al. Inclisiran in Patients at High Cardiovascular Risk with Elevated LDL Cholesterol. N Engl J Med. 2017;376(15):1430-40. doi:10.1056/NEJMoa1615758.
69. Hovingh GK, Lepor NE, Kallend D, et al. Inclisiran Durably Lowers Low-Density Lipoprotein Cholesterol and Proprotein Convertase Subtilisin/Kexin Type 9 Expression in Homozygous Familial Hypercholesterolemia: The ORION-2 Pilot Study. Circulation. 2020;141(22):1829-31. doi:10.1161/CIRCULATIONAHA.119.044431.
70. Kosmas CE, Muñoz Estrella A, Skavdis A, et al. Inclisiran for the Treatment of Cardiovascular Disease: A Short Review on the Emerging Data and Therapeutic Potential. Ther Clin Risk Manag. 2020;16:1031-7. doi:10.2147/TCRM.S230592.
71. Raal FJ, Kallend D, Ray KK, et al. ORION-9 Investigators. Inclisiran for the Treatment of Heterozygous Familial Hypercholesterolemia. N Engl J Med. 2020;382(16):1520-30. doi:10.1056/NEJMoa1913805.
72. Ray KK, Wright RS, Kallend D, et al. ORION-10 and ORION-11 Investigators. Two Phase 3 Trials of Inclisiran in Patients with Elevated LDL Cholesterol. N Engl J Med. 2020;382(16):1507-19. doi:10.1056/NEJMoa1912387.
73. Khan SA, Naz A, Qamar Masood M, Shah R. Meta-Analysis of Inclisiran for the Treatment of Hypercholesterolemia. Am J Cardiol. 2020;134:69-73. doi:10.1016/j.amjcard.2020.08.018.
74. Huang YT, Ho LT, Hsu HY, et al. Efficacy and Safety of Proprotein Convertase Subtilisin/ Kexin Type 9 Inhibitors as Adjuvant Treatments for Patients with Hypercholesterolemia Treated with Statin: A Systematic Review and Network Meta-analysis. Front Pharmacol. 2022;13:832614. doi:10.3389/fphar.2022.832614.
75. Toth PP, Bray S, Villa G, et al. Network Meta-Analysis of Randomized Trials Evaluating the Comparative Efficacy of Lipid-Lowering Therapies Added to Maximally Tolerated Statins for the Reduction of Low-Density Lipoprotein Cholesterol. J Am Heart Assoc. 2022;11(18):e025551. doi:10.1161/JAHA.122.025551.
76. Burnett H, Fahrbach K, Cichewicz A, et al. Comparative efficacy of non-statin lipidlowering therapies in patients with hypercholesterolemia at increased cardiovascular risk: a network meta-analysis. Curr Med Res Opin. 2022;38(5):777-84. doi:10.1080/03007995.2022.2049164.
77. Talasaz AH, Ho AJ, Bhatty F, et al. Meta-analysis of clinical outcomes of PCSK9 modulators in patients with established ASCVD. Pharmacotherapy. 2021;41(12):1009-23. doi:10.1002/phar.2635.
78. Wang X, Wen D, Chen Y, et al. PCSK9 inhibitors for secondary prevention in patients with cardiovascular diseases: a bayesian network meta-analysis. Cardiovasc Diabetol. 2022;21(1):107. doi:10.1186/s12933-022-01542-4.
79. Roth EM, Goldberg AC, Catapano AL, et al. Antidrug Antibodies in Patients Treated with Alirocumab. N Engl J Med. 2017;376(16):1589-90. doi:10.1056/NEJMc1616623.
80. Cai T, Abel L, Langford O, et al. Associations between statins and adverse events in primary prevention of cardiovascular disease: systematic review with pairwise, network, and doseresponse meta-analyses. BMJ. 2021;374:n1537. doi:10.1136/bmj.n1537.
81. Zhao Z, Du S, Shen S, et al. Comparative efficacy and safety of lipid-lowering agents in patients with hypercholesterolemia: A frequentist network meta-analysis. Medicine (Baltimore). 2019;98(6):e14400. doi:10.1097/MD.0000000000014400.
82. Gürgöze MT, Muller-Hansma AHG, Schreuder MM, et al. Adverse Events Associated With PCSK9 Inhibitors: A Real-World Experience. Clin Pharmacol Ther. 2019;105(2):496-504. doi:10.1002/cpt.1193.
83. Sabatine MS, Giugliano RP, Keech AC, FOURIER Steering Committee and Investigators, et al. Evolocumab and clinical outcomes in patients with cardiovascular disease. N Engl J Med. 2017;376(18):1113-22.
84. Geng Q, Li X, Sun Q, Wang Z. Efficacy and safety of PCSK9 inhibition in cardiovascular disease: a meta-analysis of 45 randomized controlled trials. Cardiol J. 2022;29(4):574-81. doi:10.5603/CJ.a2021.0110.
85. Raal F, Scott R, Somaratne R, et al. Low-density lipoprotein cholesterol-lowering effects of AMG 145, a monoclonal antibody to proprotein convertase subtilisin/kexin type 9 serine protease in patients with heterozygous familial hypercholesterolemia: the Reduction of LDL-C with PCSK9 Inhibition in Heterozygous Familial Hypercholesterolemia Disorder (RUTHERFORD) randomized trial. Circulation. 2012;126(20):2408-17. doi:10.1161/CIRCULATIONAHA.112.144055.
86. Qamar A, Giugliano RP, Keech AC, et al. Interindividual Variation in Low-Density Lipoprotein Cholesterol Level Reduction With Evolocumab: An Analysis of FOURIER Trial Data. JAMA cardiology. 2019;4(1):59-63. doi:10.1001/jamacardio.2018.4178.
87. Park BJ, Makaryus JN, Hirsh B, Boutis LS. Evolocumab treatment failure following COVID-19 MRNA vaccination. J Am Coll Cardiol. 2022;79(9):2390. doi:10.1016/S0735-1097(22)03381-2.
88. Mansi I, Frei CR, Wang CP, Mortensen EM. Statins and New-Onset Diabetes Mellitus and Diabetic Complications: A Retrospective Cohort Study of US Healthy Adults. J Gen Intern Med. 2015;30(11):1599-610. doi:10.1007/s11606-015-3335-1.
89. Angelidi AM, Stambolliu E, Adamopoulou KI, Kousoulis AA. Is Atorvastatin Associated with New Onset Diabetes or Deterioration of Glycemic Control? Systematic Review Using Data from 1.9 Million Patients. Int J Endocrinol. 2018;2018:8380192. doi:10.1155/2018/8380192.
90. Seo WW, Seo SI, Kim Y, et al. Impact of pitavastatin on new-onset diabetes mellitus compared to atorvastatin and rosuvastatin: a distributed network analysis of 10 real-world databases. Cardiovasc Diabetol. 2022;21(1):82. doi:10.1186/s12933-022-01524-6.
91. Chen Q, Wu G, Li C, et al. Safety of Proprotein Convertase Subtilisin/Kexin Type 9 Monoclonal Antibodies in Regard to Diabetes Mellitus: A Systematic Review and Metaanalysis of Randomized Controlled Trials. Am J Cardiovasc Drugs. 2020;20(4):343-53. doi:10.1007/s40256-019-00386-w.
92. Lappin J, Llano A. Inclisiran. Practical diabetes. 2021;38(2):41-3. doi:10.1002/pdi.2333.
93. Zhang H, Plutzky J, Skentzos S, et al. Discontinuation of statins in routine care settings. Ann Intern Med. 2013;158(7):526. doi:10.7326/0003-4819-158-7-201304020-00004.
94. Hines DM, Rane P, Patel J, et al. Treatment patterns and patient characteristics among early initiators of PCSK9 inhibitors. Vasc Health Risk Manag. 2018;14:409-18. doi:10.2147/VHRM.S180496.
95. Cupido AJ, Kastelein JJP. Inclisiran for the treatment of hypercholesterolaemia: implications and unanswered questions from the ORION trials. Cardiovasc Res.