Статья
АТЕРОСКЛЕРОЗ, КАЛЬЦИФИКАЦИЯ СОСУДОВ И ПОНИЖЕНИЕ ПЛОТНОСТИ КОСТНОЙ ТКАНИ (ОСТЕОПОРОЗ): ОБЩНОСТЬ ПАТОФИЗИОЛОГИЧЕСКИХ МЕХАНИЗМОВ РАЗВИТИЯ ЗАБОЛЕВАНИЙ И ПОИСК НОВЫХ СРЕДСТВ ДВОЙНОЙ ТЕРАПИИ
Атеросклероз и остеопороз представляют собой две важные проблемы мирового здравоохранения, проявляющие прямые эпидемиологические связи и предполагаемые общие механизмы патогенеза, а также общий набор терапевтических средств. Корреляция связи между атеросклерозом и остеопорозом установлена при исследовании патофизиологических механизмов, совпадающих по многим биохимическим путям развития заболеваний, факторам риска, способствующих развитию сосудистых нарушений, ассоциирующих одновременно со снижением минеральной плотности костей. Многими экспериментальными исследованиями показано, что ядерный фактор кВ (RANK), его лиганд (RANKL) и связывающий лиганд протеин остеопротегерин (OPG) являются избирательно действующими главными регуляторами костного метаболизма, участвующими в развитии костных заболеваний. Установлено также, что RANK-RANKL-OPG система играет важную роль в биологическом развитии сосудов. Отмечено, что молекулы фактора ядерного некроза опухоли (TNF-α) принимают активное участие в процессе кальцификации сосудов. В экспериментах на животных и клинических наблюдениях установлено, что цитокиновая система RANK-RANKL-OPG и протеиназа катепсин К выполняют важную роль как в патогенезе атеросклероза, так и механизме развития остеопороза. Таким образом, понимание общих механизмов развития атеросклероза, кальцификации сосудов атеросклероза и остеопороза, преимущественное участие в этих процессах RANK-RANKL-OPG системы и катепсина К, позволило разработать новые препараты (деносумаб и оданакатиб) с двойным терапевтическим эффектом.
1. Fuster V, Kelly B. B., editors. Promoting Cardiovascular Health in the Developing World. Washington. National Academies Press. 2010, 482 p.
2. Ireland R. Recent trends in cardiovascular epidemiology in Europe. Euro Heart Conference, Brussels, 2009.
3. WHO. World health statistics 2009, Geneva: World Health Organization; 2009: 290 p.
4. Dennison E. M., Cooper C. Osteoporosis in 2010: building bones and (safely) preventing breaks. Nat. Rev. Rheumatol. 2011; 7 (1): P. 80-2.
5. Reda A., Bartoletti M. G. Osteoporosis: epidemiology, clinical and biological aspects. BMC Geriatrics. 2010; 10 (1): P. 71-75.
6. IOF World Congress on Osteoporosis and 10th European Congress of Clinical and Economic aspects of Osteoporosis and Osteoarthritis. IOF World Congress. Osteoporosis Int. 2010; 21 (5): S1S6.
7. Harvey N., Dennison E. M., Cooper C. Osteoporosis: impact on health and economics. Nat. Rev. Rheumatol. 2010; 6 (1): P. 99-6.
8. Dhanwal D. K., Dennison E. M., Harvey N. C., Cooper C. Epidemiology of hip fracture: worldwide geographic variation Indian J. Orthop. 2011; 45 (1): P. 15-22.
9. Mβhlen von, D., Allison M., Jassal S. K., Barrett-Connor E. Peripheral arterial disease and osteoporosis in older adults: the Rancho Bernardo Study Osteoporosis Int. 2009; 20 (12):P. 2071-78.
10. Crepaldi G., Maggi S. Epidemiologic link between osteoporosis and cardiovascular disease J. Endocrinol. Invest. 2009; 32 (4): P. 2-5.
11. Celik C., Altunkan S., Yildirim M. O., Akyuz M. Relationship between decreased bone mineral density and subclinical atherosclerosis in postmenopausal women Climacteric. 2010; 13 (3): P. 254-58.
12. Dobnig H., Hofbauer L. Osteoporosis and atherosclerosis: common pathway. J. Clin. Endocrinol. 2009; 2 (3):P. 12-16.
13. Wright N, Looker A. C., Saag K. G., Curtis J. P., Detzell E. S., Randall S., Dawson-Hughes B. The recent prevalence of osteoporosis and low bone mass in the United States based on bone mineral density at the femoral neck or lumbar spine. J. Bone Miner. Res. 2014; 29 (11): P. 2520-26.
14. Ström O., Borgström E., Kanis E., Compston J., Cooper C., McCloskey E. V., Jönsson B. Osteoporosis: burden, health care provision and opportunitis in the EU. Arch. Osteoporos. Springer, 2011, 254 p.
15. Nichols M., Townsend N., Scarborough P., Rayner M. Cardiovascular disease in Europe 2014: epidemiological update. Eur. Heart J. 2014; 35 (42): P. 2950-2959.
16. Fuster V. Global burden of cardiovascular disease. Time to implement feasible strategies and to monitor results. J. Am. College Cardiol. 2014; 64 (5):P. 520-22.
17. Periard D., Folly A., Meyer M. A., Gautier E., Krieg M. A., Hayoz D. Aortic calcification and risk of osteoporotic fractures. Rev. Med. Suisse. 2010; 6 (271): P. 2200-3.
18. Tabas I., Garcia-Cardena G., Owens G. K. Recent insights into the cellular biology of atherosclerosis J. Cell Biol. 2015; 209 (1): P. 13-22.
19. Manduteanu I., Simionescu M. Inflammation in atherosclerosis: a cause or a resalt of vascular disorders? L. Cell Mol. Med. 2012; 16 (9): P. 1978-90.
20. Bai L., Lutgens E., Heeneman S. Cathepsins in atherosclerosis. In. Atherosclerosis: molecular and cellular mechanisms. Eds. S. J. George, J. Johnson. Wiley-Blackwell, 2010. P. 173-91.
21. Lutgens S. P. M., Cleutjens K. B. J. M., Daemen M. J. A. P., Heeneman S. Cathepsin cysteine proteases in cardiovascular disease. FASEB J. 2007; 21 (12): P. 3029-41.
22. Boonen S., Rosenberg E., Claessens F., Van der Schueren D., Papapoulos S. Inhibition of cathepsin K for treatment of osteoporosis. Curr. Osteoporosis Rep. 2012; 10 (1): P. 73-79.
23. Langdahl B. L. New treatment of osteoporosis. Osteoporosis Sarcopenia 2015; 1 (1): P. 4-21.
24. Costa A. G., Cusano N. E., Silva B. C., Cremers S., Bilezikian J. P. Cathepsin K: its skeletal actions and role as a therapeutic target in osteoporosis. Nature Rev. Rheumatol. 2011; 7 (8): P. 447-56.
25. Turk V., Stoka V., Vasiljeva O., Renko M., Sun T., Turk B., Turk D. Cysteine cathepsins: from structure, function and regulation in new frontiers // Biochem. Biophys. Acta. 2012; 1824 (1): P. 68-88. 26. Brömme D., Lecaille F. Cathepsin K inhibitors for osteoporosis and potential off-target effects// Expert. Opin. Invest. Drugs 2009. Vol. 18, N5. P. 585-600.
26. Rucci N. Molecular biology of bone remodeling. Clin. Cases Miner. Bone Metab. 2008; 5 (1): P. 49-56.
27. Crockett J. C., Rogers M. J., Coxon F. P., Hocking L. J., Helfrich M. H. Bone remodeling at a glance. J. Cell. Sci. 2011; 124 (7): P. 991-98.
28. Sagalovsky S., Schönert M. RANKL-RANKOPG system and bone remodeling: a new approach to the treatment of osteoporosis. Clin. Exp. Pathol. 2011; 10 (2): P. 146-53.
29. Datta H. K., Ng W. F., Walker J. A., Tuck S. P., Varanasi S. S. The cell biology of bone metabolism. J. Clin. Pathol. 2008; 61 (5): P. 577-87.
30. Raggatt L. J., Partridge N. C. Cellular and molecular mechanisms of bone remodeling. J. Biol. Chem. 2010; 285 (33): P. 25103-108.
31. Jensen E. D., Gopalakrishnan R., Westendorf J. J. Regulation of gene expression in osteoblasts. Biofactors 2010; 36 (1): P. 25-32.
32. Fakhry M., Hamade E., Bardan B., Buchet R., Magne D. Molecular mechanisms of mesenchymal stem cell differentiation toward osteoblasts. World J. Stem. Cells 2013; 5 (4):P. 136-48.
33. Komori T. Regulation of osteoblast differentiation by RUNX2.Osteoimmunology. 2010; 658 (1): P. 43-9.
34. Wojtowicz A. M., Templeman K. L., Hutmacher D. W., Guldberg R. E., Garcia A. J. RUNX2 overexpression in bone marrow bone formation in critical-sized femoral defects. Tissue Engineering. Part A. 2010; 16 (9): P. 27952808.
35. Tu Q., Zhang J., James L., Dickson J., Tang J., Yang P., Chen L. Cbfa1/Runx2 - deficiency delays bone wound healing and locally delivered Cbfa1/Runx2 promotes bone repair in animal models. Wound Repair Regen 2007; 15 (3): P. 404-412.
36. James A. W., Review of signaling pathways governing MCS osteogenic and adipogenic differentiation. Scientifica 2013; 2013. Article ID 684736, 17 p.
37. Martin J. W., Zielenska M., Stein G. S., Van Wijnen A. J., Squire J. A. The role of RUNX2 in osteosarcoma oncogenesis. Sarcoma 2011; 2011. Article ID 282745, 13 p.
38. Zhu F., Friedman M. S., Luo W., Woolf P., Hankenson K. D. The transcription factor Osterix (SP7) regulates BMP6-induced human osteoblast differentiation. J. Cell Physiol. 2012; 227 (6):P. 2677-85.
39. Kirkham G. R., Cartmell S. H. Genes and proteins involved in the regulation of osteogenesis. In: Topics in tissue engineering Eds. N. Ashammakhi, R. Reis, E. Chiellini. Raven PressVol. 3, 2007. P. 1-22.
40. Komori T. Regulation of bone development and extracellular matrix protein genes by RUNX2. Cell Tissue Res. 2010; 339 (2): P. 189-95.
41. Van Blitterswijk C. A., De Boer J. Tissue engineering. Second edition. N. Y: Academic Press. 2015. 839 p.
42. Kini U., Nandeesh B. N. Physiology of bone formation, remodeling and metabolism. Radionuclide and hybrid bone imaging. Eds. I. Fogelman, G. Gnanasegaran, H. van der Wall. Springer-Verlag, Heidelberg, 2012. P. 29-57.
43. Parra-Torres A. Y., Valdes-Flores M., Orozco L., Valazquez-Cruz R. Molecular aspects of bone remodeling. In: Topics in osteoporosis. Valdes-Flores M., ed. INTECH, 2013; P. 1-27.
44. Gordon J. A. R., Tye C. E., Sampaio A. V., Underhill T. M., Hunder G. K., Goldberg H. A. Bone sialoprotein expression enhances osteoblast differentiation and matrix mineralization in vitro. Bone 2007; 41 (5): P. 462-73.
45. Malval L., Wade-Gueye N. M., Boudiffa M., Fei J., Zimgibi R., Chen F., Laroche N., Rouse J. P., Burt-Pichart B., Duboeuf F., Boivin C., Jurdic P., Lafage-Proust M. H., Amedee J., Vico L., Rosmant J., Aubin J. E. Bone sialoprotein plays a functional role in bone formation and osteoclastogenesis. J. Exp. Med. 2008; 205 (5): P. 1145-53.
46. Jacques C., Gooset M., Berenbaum F., Gabay C. The role of IL-1 and IL-RA in joint inflammation and cartilage degradation. In: Interleukins, vitamins and hormones. Advances in research and application. Ed. Litwack G. N. Y.:Academic Press, 2012. P. 372-98.
47. Tseng W., Lu J., Bishop G. A., Watson G. A., Sage A. P., Demer L., Tintut Y. Regulation of interleukin-6 expression in osteoblasts by oxidized phospholipids. J. Lipid Res. 2010; 51 (10): P. 1010-16.
48. Lombardi G., Di Somma C., Rubino M., Faggiano A., Vuolo L., Guerra E., Contraldi P., Savastano S., Colao A. The roles of parathyroid hormone in bone remodeling: prospects for novel therapeutics. J. Endocrinol. Invest. 2011; 37 (7): P. 18-22.
49. Takahashi N., Udagawa N., Suda T. Vitamin D endocrine system and osteoblast. Bone Key Rep. 2014; 3 (493): P. doi 10.1038.
50. Almedia M., Iyer S., Martin-Millan M., Bartell S. M., Han L., Ambrogini E., Onal M., Xiong J., Weinstein R. S., Jilka R. L., O’Brien C. A., Manolagas S. C, Estrogen receptor-α signaling progenitors stimulates cortical bone accrual. J. Clin. Invest. 2013; 123 (1): P. 394-404.
51. Soysa N. S., Alles N., Aoki K., Ohya K. Osteoclast formation and differentiation: an overview. J. Med. Dent. Sci. 2012; 59 (1): P. 65-74.
52. Perez-Sayans M., Samoza-Martin J. M., Barros-Anqueira F., Rey J. M., Garcia-Garcia A. RANK/RANKL/OPG role in distraction osteogenesis. Oral Surg. Oral Med. 2010; 109 (5): P. 679-86.
53. Weitzmann N. M. The role of inflammatory cytokines, the RANKL/OPG axis, and the immunoskeletal interface in physiological bone turnover and osteoporosis. Scientifica 2013; 2013. Article ID 125705, 29 p 55. Kohli S. S., Kohli V. S. Role of RANKLRANK/osteoprotegerin molecular complex in bone remodeling and its immunopathologic implication. Indian J. Endocrinol. Metab. 2011; 15 (3): P. 175-81. 56. Sims N. A., Martin T. J. Coupling the activates of bone formation and resorption: a multitude of signal within the basic multicellular unit. Bone Key Rep. 2014; 3 (481): Article doi: 10.1038.
54. Kasagi S., Chen W. TGF-beta 1 on osteoimmunology and the bone compaunet cells. Cell Biosci. 2013; 8 (4): P. Article doi: 10.1186.
55. Lee M. S., Kim H. S., Yeon T., Choi S. W., Chung C. H., Kwak H. B., Oh J. GM-CSF regulates fusion of mononuclear osteoclasts into bone-resorbing osteoclasts by activating the Ras/ERK pathway. J. Immunol. 2009; 183 (5): P. 3390-99
56. Nelson C. A., Warren J. T., Wang M. W. H., Teitelbaum S. L., Fremont D. H. RANKL employs distinct binding modes to engage RANK and the osteoprotegerin decoy receptor. Structure 2012; 20 (11): P. 1971-82.
57. Tat S. K., Pelletier J. P., Lajeunesse D., Fahmi H., Lavigne M., Martel-Pelletier J. The differential expression of osteoprotegerin (OPG) and receptor activator of nuclear factor kB (RANKL) in human osteoartritic subchondral bone osteoblast is an indicator oft he metabolic state of these disease cells. Clin. Exptl. Reumatol. 2008; 26 (4): P. 295-304.
58. Pangrazio A., Cassani B., Guerrini M. M., Crockett J. C., Marrella V., Zammataro I., Strina D., Schulz A., Schlack C., Kornak U., Mellis D. J., Duthie A., Helstromal cells accelerates frich M. H., Durandy A., Noshous D., Vellodi A., Chiesa R., Veys P. RANKL-dependent autosomal recessive osteopetrosis: characterization of five new cases with novel mutation. J.Bone Miner. Res. 2012; 23 (2): P. 342-54.
59. Iacono L. N., Blair H. C., Poliani P. L., Marrella V., Ficara F., Cassani B., Facchetti F., Fontana E., Guerrini M. M., Traggiani E., Schena F., Paulis M., Mantero S., Inforzato A. Osteopetrosis rescue upon RANKL administration to RANKL (-/-) mice: a new therapy for human RANKL-dependent ARO. J. Bone Miner. Res. 2012; 27 (12): P. 2501-10.
60. Hodge J. M., Collier F. M., Pavlos N. J., Kirkland M. A., Nicholson G. C. M-CSF potently augments RANKL-induced reception activation in mature human osteoclasts. PLOS one 2011; 6 (6): E 21462.
61. Darnay B. G., Besse A., Poblenz A., Lamothe B., Jacoby J. J. TRAFs in RANKL signaling. In: NF receptor associated factors (TRAFs). Ed. H. A. O. Wu. Landes Bioscience a. Springer Science. 2007; P. 152-159.
62. Lin F. T., Lin V. Y., Lin V. T. G., Lin W. C. TRIP6 antagonized the recruitment of A20 and CYLD to TRAF6 to promote the LPA2 receptor-mediated TRAF6 activation. Cell Discovery 2016; 2 (2016): Article 15048, doi: 10.1038.
63. Boyce B. F., Xing L. Biology of RANK. RANKL and osteoprotegerin. Arthritis Res. Ther. 2007; 9 (1): P. 51.
64. Boyce B. F., Rosenberg E., De Papp A. E., Duong L. The osteoblast, bone remodeling, and treatment of metabolic bone disease. Eur. J. Clin. Invest. 2012; 42 (12): P. 1332-41.
65. Labovsky V., Vallone V. B. F., Martinez L. M., Otaegui J., Chasseing N. A. Expression of osteoprotegerin, receptor activator of nuclear factor kappa-B ligand, tumor necrosis factor-related apoptosis-inducing ligand, stromal cell-derivated factor-1 and their receptors in epithelial metastatic breast cancer cell lines. Cancer Cell Internat. 2012; 2012 (12): 29 doi:10.1186.
66. Yeung R. S. M. Osteoprotegerin/Osteoprotegerin ligand family: role in inflammation and bone loss. J. Rheumatol. 2009; 31 (5): P. 844-46.
67. Kuroyanagi G., Otsuka T., Yamamoto N., Matsushima-Nishiwaki R., Nakakami A., Mizutani J., Kozawa O., Tokuda H. Down-regulation by resveratol of basic fibroblast growth factor-stimulated osteoprotegerin synthesis through suppression of Akt in osteoblasts. Int. J. Mol. Sci. 2014; 15 (10): P. 17886-900.
68. Sagalovsky S. Bone remodeling: cellular-molecular biology and cytokine RANK-RANKL-osteoprotegerin (OPG) system and growth factors. Crimean J. Exptl. Clin. Med. 2013; 3 (1-2): P. 36-43. 72. Liu W., Zhang X. Receptor activator of nuclear factor-kB ligand (RANKL)/RANK/osteoprotegerin system in bone and other tissue (review). Mol. Med. Rep. 2015; 11 (5): P. 3212-18.
69. Pietschniann P., Mechtcheriakova D., Mechtcheriakova A., Föger-Samwald U., Ellinger I. Immunology of osteoporosis (a mini-review). Gerontology 2016; 62 (2): P. 128-37.
70. Van Compenhout A., Golledge J. Osteoprotegerin, vascular calcification and atherosclerosis. Atherosclerosis. 2009; 204 (2): P. 321-29
71. McManus S., Chamoux E., Bisson M., Roux S. Modulation of tumor necrosis factor related apoptosis-inducing ligand (TRAIL) receptors in a human osteoclast model in vitro. Apoptosis 2012; 17 (2): P. 121-31.
72. Sandra F., Hendarmin L., Nakamura S. Osteoprotegerin (OPG) binds with tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) suppression of TRAIL-induced apoptosis in ameloblastomas. Oral Oncol 2006; 42 (4): P. 415-20.
73. Walsh M. C., Choi Y. Biology of the RANKLRANK-OPG system in immunity, bone and beyond. Front Immunol. 2014; 14 (3): P. 251-63.
74. Grigoropoulou P., Eleftheriadou I., Zoupas C., Tentolouris N. The role of the Osteoprotegerin/RANKL/RANK system in diabetic vascular disease. Curr. Med. Chem. 2011; 18 (31): P. 4813-19.
75. BenslimaneAhmim Z., Heymann D., Dizier B., Lokaiczyk A., Brion R., Laurendean I., Bieche I., Smadia D. M., Galy-Fauroux I., Colliec-Jouault S., Fischer A. M., Boisson-Vidal C. Osteoprotegerin, a new actor in vasculogenesis, stimulates endothelial colonyforming cells properties. J. Thromb. Haemostat. 2011; 9 (4): P. 834-43.
76. Wright H. L., McCarthy H. S., Middleton J., Marshall M. I. RANK, RANKL and osteoprotegerin in bone biology and disease. Curr. Rev. Musculoskelet. Med. 2009; 2 (1): P. 56-64.
77. Kelesidis T., Currier J. S., Yang O. O., Brown T. T. Role RANKL-RANK/osteoprotegerin pathway in cardiovascular and bone disease associated with HIV infection. AIDS Rev. 2014; 16 (3): P. 123-33.
78. Sagalovsky S., Richter T. Pathophysiological entity of cellulomolecular mechanisms of development of osteoporosis and atherosclerosis of vessels. Int. Med. J. 2012; 18 (4): P. 71-78.
79. Stevenson J. C. New techniques in metabolic bone disease. Wright, London. 2013. 315 p.
80. Kleinhaus C., Schmid F. F., Schmid F. V., Kluger P. J. Comparison of osteoclastogenesis and resorption activity of human osteoclasts on tissue culture polystyrene and on natural extracellular bone matrix in 2D and 3D. J. Biotech. 2015; 205 (2): P. 101-10.
81. Zou W., Teitelbaum S. L. Integrins, growth factors, and the osteoclast cytoskeleton. Ann. N. Y.Acad.Sci. 2010; 1192: P. 27-31.
82. Lowin T., Straub R. H. Integrins and their ligands in rheumatoid arthritis. Arthritis Res. Therapy 2011; 13: P. 244-56.
83. Florencio-Silva R., Da Silva Sasso G. R., SassoCerri E, Simones M. J., Cerri P. S. Biology of bone tissue: structure, function, and factors that influence bone cells. Biomed. Res. Int. 2015; 2015: Article ID 421746, 17 p.
84. Boyce B. F., Yao Z., Xing L. Osteoclasts have multiple roles in bone in addition bone resorption. Crit. Rev. Eukaryot Gene Expr. 2009; 19 (3): P. 171-80.
85. Ross P. F. Osteoclast biology and bone resorption In: Primer on the metabolic bone diseases and disorders of mineral metabolism. Eds. C. J. Rosen, P. F. Ross. 7 nd ed. ASBMR, 2013; P. 16-22.
86. Schaller S., Henriksen K., Sörensen M. G., Karsdal M. A. The role of chloride channels in osteoclasts: CIC-7 as a target for osteoporosis treatment. Drug News Perspect 2005; 18 (8): P489-95. 91. Hall B. K. Bones and cartilage: development and evolutionary skeletal biology. Second edition, Acad. Press, 2015; 869 p.
87. Heinz S. A., Paliwal S., Ivanovski S. Mechanisms of bone resorption in periodontitis. J. Immunol. Res. 2015; 2015: Article ID 615486, 10 p.
88. Margolis D. S., Szivek J. A., Lai L. W., Lien Y. H. H. Phenotypic characteristics of bone in carbonic anhydrase II-deficient mice. Calcif. Tissue Int. 2008; 82 (1): P. 66-76.
89. Qin A., Cheng T. S., Pavlos N. J., Lin Z., Dai K. R., Zheng M. H. V-ATPases in osteoclasts: structure, function and potential inhibitors of bone resorption. Int. J. Biochem.Cell.Biol. 2012; 44 (9): P. 1422-35.
90. Holliday S. L. Vacuolar H+-ATPase: an essential multitasking enzyme in physiology and pathophysiology. New J. Sci. 2014; 2014: Article ID 675430, 21 p.
91. Blair H. C., Simonet S., Lacey D. I., Zaidi M. Osteoclast biology. In: Fundamentals of osteoporosis; Eds. R. marcus., D. Feldman, D. Nelson, C. J. Rosen. Acad. Press,2010; P. 113-30.
92. Shinohara C., Yamashita K., Matsuo T., Kitamura S S., Kawano F. Effects of carbonic anhydrase inhibitor acetazolamide (AZ) in osteoclasts and bone structure. J. Hard Tissue Biol. 2007; 2007 (1): P. 115-23.
93. Henriksen K., Sörensen M. G., Jensen V. K., Dziegiel M. H., Nosiean O., Karsdal M. A. Ion transportes involved in acidication oft he resorption lacuna in osteoclasts. Calcif. Tissue Int. 2008; 83 (3): P. 230-42.
94. Morethson P. Extracellular fluid flow and chloride content modulate H+ transport by osteoclasts. BMC Cell Biol. 2015; 16 (1): P. 20-27.
95. Duong L. T. Inhibition of cathepsin K: blocking osteoclast bone resorption and more. IBMS Bone Key 2013; 2013: Article 396.
96. Wilson S. R., Peters C., Saftig P., Brömme D. Cathepsin K activity-dependent regulation of osteoclast actin ring formation and bone resorption. J. Biol. Chem. 2009; 284 (4): P. 2584-92.
97. Brömme D., Wilson S. Role of cysteine cathepsins in extracellular proteolysis. In: Extracellular matrix degradation. Eds. W. C. Parks, R. P. Mecham. Springer, Heidelberg, 2011; P. 23-52.
98. Duong L. T. Therapeutic inhibition of cathepsin K-reducing bone resorption while maintaining bone formation. Bone Key Rep. 2012; 1: Article 67.
99. Brömme D. Bone remodeling: cathepsin K in collagen turnover. In: Matrix proteasomes in health and disease. Ed. N. Behrendt. Wiley-VCH. 2012; P. 74-92.
100. Hayman A. R. Tartrate-resistant acid phosphatase (TRAP) and the osteoclast/immune cell dichotomy // Autoimmunity. 2008. Vol. 41, N3. P. 218-23.
101. Blumer M. J. F., Hausott B., Schwarzer C., Nayman A. R., Stempel J., Fritsch H. Role of tartrate-resistant acid phosphatase (TRAP) in long bone development. Mechanisms Development. 2012; 129 (5-8): P. 162-76.
102. O’Rourke C., Shelton G., Hutcheson J. D., Burke M. F., Martyn T., Thayer T. E., Shakartzi H. R., Buswell M. D., Tainsh R. E., Yu B., Baqchi A., Rhee D. K., Wu C. Calcification of vascular smooth muscle cells and imaging of aortic calcification and inflammation. J. Vis. Exp. 2016; 111: P. e. 54017.
103. Lanzer P., Boehm M., Sorribas V., Thiriet M., Janzen J., Zeller T., St. Hilaire C., Shanahan C. Medial vascular calcification revised: review and perspectives. Eur. Heart J. 2014; 163: P. 1515-25.
104. Ferreira C., Ziegler S., Gahl W. Generalized arterial calcification of infancy. In: Gene Reviews. Eds. R. A. Pagon, M. P. Adam, H. H. Ardinger. Seatle, WA. 1993- 2015. P. 25-36.
105. Nitschke I., Baujat G., Botschen U., Wittkampf T., Du Moulin M., Stella J., Le Merrer M., Guest G., Lambot K., Tazaroute-Pinturier M. F., Chassaing N., Roche O. Generalized arterial calcification of infancy and pseudoxanthoma elasticum can be caused by multations in either ENPP1 or ABCC6. Am. J. Human Gen. 2012; 90 (1): P. 25-39.
106. Schlieper G., Schurgers L., Brandenburg V., Reutelingspreger C., Floege J. Vascular calcification in chronic kidney disease: an update. Nephrol. Dial. Transplant. 2016; 31 (1): P. 31-39.
107. Dolzhenko A. T., Richter T., Sagalovsky S. Role of nuclear factor (NF-kB) protein in atherosclerosis and diabetes: a potential therapeutic target. Probl. Endocrinol. Pathol. 2015; 54 (4): P. 87-104.
108. Pajak A., Kozela M. Cardiovascular disease in Central and East Europe. Public Health Rev. 2012; 33 (2): P. 416-35.
109. Nichols M., Townsend N., Scarborough P., Rayner M. Cardiovascular disease in Europe-epidemiological update 2015. Eur. Heart J. 2015; 35 (5): P. 2950-59.
110. Huang C. L., Wu I. H., Wu Y. W., Hwang J. J., Wang S. S., Chen W. J., Lee W. J., Yang W. S. Association of lower extremity arterial calcification with amputation and mortality in patients with symptomatic peripheral artery disease. PLoS One. 2014; 9 (2): P. e 90201.
111. Zhu D., Mackenzie N. C. W., Farguharson C., MacRoe V. E. Mechanisms and clinical consequences of vascular calcification. Front Endocrinol. (Lausanne) 2012; 3 (1): P. 95-110.
112. Sage A. P., Tintut J., Demer L. L. Regulatory mechanisms in vascular calcification. Nat. Rev. Cardiol. 2010; 7 (9): P. 528-36.
113. Bentzon J. F., Otsuka F., Virmani R., Falk E. Acute coronary syndromes compendium. Mechanisms of plaque formation and rupture. Circulation Res. 2014; 114 (12): P. 1852-66.
114. Kanwar S. S., Stone G. W., Singh M., Wirmani R., Olin J., Akasaka T., Narula J. Acute coronary syndromes without coronary plaque rupture. Nat. Rev. Cardiol. 2016; 13 (5): P. 257-65.
115. Angelovich T., Hearps A. C., Jaworowski A. Inflammation-induced foam cell formation in chronic inflammatory disease. Immunol. Cell. Biol. 2015; 93 (7): P. 683-93.
116. Buckley M. L., Ramji D. P. The influence of dysfunctional signaling and lipid homeostasis in mediating the inflammatory responses during atherosclerosis. Biochim. Biophysic Acta. 2015; 1857 (7): P. 1498-1510.
117. Thompson B., Towler D. A. Arterial calcification and bone physiology: role of the bone-vascular axis. Nature Rev. Endocrinol. 2012; 8 (9): P. 529-43.
118. Cecelja M., Chowienczyk P. Role of arterial stiffness in cardiovascular disease. Cardiovasc. Disease. 2012; 1 (4): P. 11-21.
119. D’Amelio P., Isaia C., Isaja G: C. The osteoprotegerin/RANK/RANKL system: a bone key to vascular disease. J. Endocrinol. Invest. 2009; 32 (4): P. 6-9.
120. Papadopouli A. E., Klonaris C. N., Theocharis S. E. Role of OPG/RANKL/RANK axis on the vasculature. Histol. Histopathol. 2008; 23 (4): P. 497- 506.
121. Byon C. H., Chen Y. Molecular mechanisms of vascular calcification in chronic kidney disease: the link between bone and vasculature. Curr. Osteoporosis Rep. 2015; 13 (4): P. 206-15.
122. Kapelouzon A., Tsourelis L., Kaklamanis L, Kostakis A., Cokkinos D. V. Serum and tissue biomarkers in aortic stenosis. Global Cardiol. Sci Pract. 2015; 49: P. 1-16.
123. Lee S. H., Choi Y. Communication between the skeletal and immune systems. Osteoporosis Sarcopenia 2015; 1 (2): P. 81-91.
124. Heymann M. F., Herisson F., Davaine J. M., Charrier C., Battaglia S., Passuti N., Lambert G., Goueffic Y., Heymann D. Role of the OPG/RANK/RANKL triad in calcification of the atheromatous plaque: comparison between carotid and femoral beds. Cytokine. 2012; 58 (2): P. 300-6.
125. Kiechl S., Werner P., Knoflach M., Furtner M., Willeit Y., Schett G. The osteoprotegerin / RANK/RANKL system: a bone key to vascular disease. Expert. Rev. Cardiovasc. Ther. 2006; 4 (6): P. 801-11.
126. Nakamichi Y., Udagawa N., Kobayashi Y., Nakamara M., Yamamoto Y., Yamashita T., Mizoguchi T., Sato M., Mogi M., Penninger J. M., Takahashi N. Osteoprotegerin reduces the serum level of receptor activator of NF-kB ligand derived from osteoblasts. J. Immunol. 2007; 178 (1): P. 192-200.
127. Zhou S., Fang X., Xin H., Li w., Qiu H., Guan S. Osteoprotegerin inhibits calcification of vascular smooth muscle cell via down regulation of the Notch1-RBP-Jk/Msx2 signaling pathway. PLoS One 2013; 8 (7): P. e68987.
128. Liberman M., Pesaro A. E. P., Carmo L. S., Serrano C. V. Vascular calcification: pathophysiology and clinical implications. Einstein (Sao Paulo) 2013; 11 (3): P. 376-82.
129. De Ciriza P. C., Lawrie A., Varo N. Osteoprotegerin in cardiometabolic disorders. Int. J. Endocrinol. 2015; 2015: Article ID564934., 15 p.
130. Byon C. H., Sun Y., Chen J., Yuan K., Mao X., Heath J. M., Anderson P. G., Tintut Y., Demer L. L., Wang D., Chen Y. RUNX2-upregulated RANKL in calcifying smooth muscle cells promotes migration and osteoclastic differentiation of macrophages. Atheroscler. Thromb. Vasc. Biol. 2011; 36 (6): P. 1387-96.
131. Panizo S., Cardus A., Encinas M., Parisi E., Valcheva P., Lopez-Ongil S., Coll B., Fernandez E., Valdiviolso J. M. RANKL increases vascular smooth muscle cell calcification through a RANK-BMP4-dependent pathway. Circulation Res. 2009; 104 (9): P. 1041-48.
132. Venuraju S. M., Yerramasu A., Corder R., Lahiri A. Osteoprotegerin as a predictor of coronary artery disease and cardiovascular mortality and morbidity. J. Am. Cell Cardiol. 2010; 55 (19): P. 2049-61. 138. Wasilewska A., Rybi-Szuminska A., Zoch-Zwierz W. Serum RANKL, osteoprotegerin (OPG), and RANKL/OPG ratio in nephrotic children. Pediatric Nephrol. 2010; 25 (10): P. 2067-75.
133. Pardoli E., Ten Dijke P. TGF-β signaling and cardiovascular disease. Int. J. Biol. Sci. 2012; 8 (2): P. 195- 213.
134. Deuell K. A., Callegari A., Giachelli C. M., Rosenfeld M. E., Scatena M. RANKL enhances macrophage paracrine pro-calcific in high phosphate-treated smooth muscle cells: dependence of IL-6 and TNF-α. J. Vasc. Res. 2012; 49 (6): P. 510-21.
135. Di Bartolo B. A., Kavurma M. M. Regulation and function of RANKL in arterial calcification. Curr. Pharm. Res. 2014; 20 (37): P. 5853-61.
136. Demer L. L., Tintut J. Vascular calcification: pathobiology of a multifaceted disease. Circulation. 2008; 117 (22): P. 2938-48.
137. Caidahl K., Ueland T., Aukrust P. Osteoprotegerin: a biomarker with many faces. Atherosclerosis, Thrombosis Vasc. Biol. 2010; 30 (9): P. 1684-86.
138. Lieb W., Gona P., Larson M. G., Massaro J. M., Lipinska I., Keaney J. F., Rong J., Corey D., Hoffmann U.,
139. Fox C. S., Vasan R. S., Benjamin E. J., O’Donnell C., Kathiresan S. Biomarkers of the osteoprotegerin pathway: clinical correlates, subclinical disease, incident cardiovascular disease, and mortality. Artherioscler. Thromb. Vasc. Biol. 2010; 30 (9): P. 1849-54.
140. Vik A., Mathiesen E., Brox J., Hansen J. B. Serum osteoprotegerin is a predictor for incident cardiovascular disease, and mortality in a general population: the Tromsö Study. J. Thromb. Haemostatic. 2011; 9 (4): P. 638-44.
141. Bennet B. J., Scatena M., Kirk E. A., Rattazzi M., Varon R. M., Averill M., Schwartz S. M., Giachelli C. M., Rosenfeld M. E. Osteoprotegerin inactivation accelerates advanced atherosclerotic lesion progression and calcification in older ApoE-/mice. Arterioscler. Thromb. Vasc. Biol. 2006; 26 (9): P. 2117-24.
142. Ren M. J., Sui S. J., Zhang Y. et al. Increased plasma osteoprotegerin levels are associated with the presence and severity of acute coronary syndrome. Acta Cardiol. 2008; 63 (5):615-622.
143. Zauli G., Rimondi E., Nicolin V., Melloni E., Celeghini C., Secchiero P. TNF-related apoptosis-inducing ligand (TRAIL) blocks osteoclastic differentiation induced by RANKL plus M-CSF. Blood 2004; 104 (7):2044-50.
144. Morony S., Tintut J., Zhang Z., Cattley R. C., Van G., Dwyer D., Stolina M., Kostenuik P. J., Demer L. L. Osteoprotegerin inhibits vascular calcification without affecting atherosclerosis in IdIr (-/-) mice. Circulation. 2008; 117 (3): P. 411-20.
145. Özkök A., Caliskan Y., Sakaci T., Erten G., Karahan G., Ozel A., Unsal A., Yildiz A. Osteoprotegerin/RANKL axis and progression of coronary artery calcification in hemodialysis patients. Clin. J. Am. Soc. Nephrol. 2012; 7 (6): P. 965-73.
146. Hyder J. A., Allison M. A., Wong N., Papa A., Lang T. F., Sirlin C., Gapstur S. M., Ouyang P., Carr J. J., Crigui M. H. Association of coronary artery and aortic calcium with lumbar bone density. Am. J. Epidemiol. 2009;169 (2): P. 186-94.
147. Song S. O., Park K.-W., Yoo S.-H., Koh W. J., Kang B. S., Kim T. H., Kim H. J., Cho Y. H., Cho D. K., Kim S. H. Association of coronary artery disease and osteoporotic vertebral fracture in Korean men and women. Endocrinol. Metab. 2012; 27 (1): P. 39-44.
148. Naves M., Rodriguez-Garcia M., Diaz-Lopez J. B., Gomez-Alonso C., Cannata-Andia J. B. Progression of vascular calcifications is associated with greater bone loss and increased bone fractures. Osteoporosis Int. 2008; 19 (8): P. 1161-66.
149. Sagalovsky S., Richter T. Link between serum osteoprotegerin, receptor activator nuclear kappa B ligand levels, coronary artery calcification and bone mineral density in women with postmenopausal osteoporosis. Exptl. Clin. Physiol. Biochem. 2013; 61 (1.): P. 52-6.
150. Demir P., Erdenen F., Aral H., Emre T., Kose S., Altunoglu E., Dolgun A., Inal B. B., Turkmen A. Serum osteoprotegerin levels with cardiovascular risk factors in chronic kidney disease. J. Clin. Lab. Anal. 2016; 2016: Article: doi. 10.1002.
151. Samokhin A. O., Lythgo P. A., Gautier J. Y., Percival M. D., Brömme D. Pharmacological inhibition of cathepsin S decreases atherosclerotic lesions in Apoe (-/-) mice. J. Cardiovasc. Pharmacol. 2010;. 56 (1): P. 98-105.
152. Izumi Y., Hayashi M., Morimoto R., Cheng X. W., Wu H., Ishii H., Yasuda Y., Yoshikawa D., Izawa H., Matzuo S., Oiso Y., Murohara T. Impact of circulating cathepsin K on the coronary calcification and the clinical outcome in chronic kidney disease patients. Heart and Vessels 2016; 31 (1): P. 6-14.
153. Guo J., Bot I., De Nooijer R., Hofman S. T., Stroup G. B., Biessen E. A., Benson G. M., Groot P. H., Van Eck M., Van Berkel T. J. Leucocyte cathepsin K affects atherosclerotic lesion composition and bone mineral density in low-density apoprotein receptor deficient mice. Cardivasc. Res. 2009; 81 (3): P. 278-85.
154. Barascuk N., Skjöt-Arkil H., Register T. C., Register T. C., Larsen L., Byrjalsen I., Chrisiansen C., Karsdal M. A. Human macrophage foam cells degrade atherosclerotic plaques through cathepsin K mediated processes. BMC Cardiovasc. Disorders. 2010; 10 (1): P. 1-9.
155. Mackey L. C., Homeister J. W. Targeted moleculartherapeutics for atherosclerosis. In: Atherosclerosis: risks, mechanisms and therapie. Rds. H. Wang., C. Patterson. First edition. John Wiley Inc. 2015. P. 533-44.
156. Sjöberg S., Shi G. P. Cysteine protease cathepsins in atherosclerosis and abnormal aneurysm. Clin. Rev. Bone Miner. Metab. 2011; 9 (2): P. 138-47.
157. Li X., Li Y., Jin D., Cui L., Li X., Rei Y., Jiang H., Zhao H., Yang G., Zhu E., Nun Y., Cheng X. Increase serum cathepsin K. in patient with coronary artery disease. Younsei Med. J. 2014; 55 (4): P. 912-9.
158. Cheng X. W., Kikuchi R., Ishii H., Yoshikawa D., Hu L., Takahashi R., Shibata R., Ikeda N., Kuzuya M., Okumara K., Murohara T. Circulating cathepsin K as a potential novel biomarker of coronary artery disease. Atherosclerosis 2013; 228 (1): P. 211-16.
159. Hua Y., Nair S. Proteases in cardiometabolic diseases: pathophysiology, molecular mechanisms and clinical application. Biochem. Biophys. Acta Mol. Basis Disease. 2015; 1852 (2): P. 195-208.
160. Hofnagel O., Robenek H. Cathepsin K: boon or bale for atherosclerotic plaque stability/ Cardiovasc Res 2008;81 (2): P. 242-3.
161. Cheng X. W., Shi G. P., Kuzuya M., Sasaki T., Okumara K., Murohara T. Role for cysteine protease cathepsins in heart disease. Focus on biology and mechanisms with clinical implication. Circulation 2012; 125 (12): P. 1551-62.
162. Samokhin A. O., Brömme D. Role of cathepsin K, L and S in blood vessel remodeling. In; Aneurysmal disease of the thoracic and abdominal aorta. Editor R. Bush. 2011. Intech Eur., Croatia, P. 193-210.
163. Sugimoto T. Anti-RANKL monoclonal antibody denosumab (AMG 162). Clin. Calcium. 2011; 21 (1): P. 46-53.
164. Varenna M., Gatti D. The role of RANKL-ligand inhibition in the treatment of postmenopausal osteoporosis. Reumatismo. 2010; 62 (3): P. 163-71.
165. Lewiecki E. M. Clinical use of denosumab for the treatment for postmenopausal osteoporosis. Curr. Med. Res. Opin. 2010; 26 (12): P. 2807-12.
166. Moen M. D., Keam S. J. Denosumab: a review of its use in the treatment of postmenopausal osteoporosis. Drug Aging. 2011; 28 (1): P. 63-82.
167. Baron R., Ferrari S., Russel R. G. G. Denosumab and bisphosphonates: different mechanisms of action and effects. Bone 2011; 48 (4): P. 677-92.
168. Yuan L. Q., Zhu J. H., Wang H. W. RANKL is a downstream mediator for insulin-induced osteoblastic differentiation of vascular smooth muscle cells. PLoS One 2011; 6 (12): P. e29037.
169. Tintut Y., Abedin M., Cho J., Choe A., Lim J., Demer L. L. Regulation of RANKL-induced osteoclastic differentiation by vascular cells. J. Med. Cell Cardiol. 2005; 39 (2): P. 389-93.
170. Samelson E. J., Miller P. D., Christiansen C., Daizadeh N. S., Grazette L., Anthony M. S., Egbuna O., Wang A., Siddhanti S. R., Cheung A. M., Franchimont N., Kiel D. P. RANKL inhibition with denosumab does not influence 3-year progression of aortic calcification or incidence of adverse cardiovascular events in postmenopausal women with osteoporosis and high cardiovascular risk. J. Bone Miner. Res. 2014; 29 (2): P. 450-57.
171. Helas S., Goettsch C., Schoppet M., Zeitz U., Hempel U., Morawietz H., Kostenuik P. J., Erben R. G., Hofbauer L. C. Inhibition of receptor activator of NF-kB ligand by denosumab attenuates vascular calcium deposition in mice. Amer. J. Pathol. 2009; 175 (2): P. 473-78.
172. Lerman D. A., Prasad S., Alotti N. Denosumab could be a potential inhibitor of vascular interstitial cells calcification in vitro. Int. J. Cardiovasc. Res. 2016; 5 (1): P. 1-7.
173. Dimitrow P. P. Aortic stenosis: new pathophysiological mechanisms and future perspectives for pharmacological therapy. Polskie Arch. Med. 2016; 126 (3): P. 121-23.
174. University of Edinburg. Study investigating the effect of drugs used to tread osteoporosis on the progression of calcific aortic stenosis (SALTIRE II). 2014. https://clinicaltrials. gov/ct2/show/NOT02132026. Accessed May 27.2015.
175. Zhou J. Y., Chan L., Zhou S. W. Omentin: linking metabolic syndrome and cardiovascular disease. Curr. Vasc. Pharmacol. 2014; 12 (1): P. 236-43.
176. Duan X., Yuan M., Ma Y. Effect and mechanism of omentin on the differentiation of osteoblasts into calcifying vascular smooth muscle cells. Chinese J. Osteoporosis. 2015; 21 (3): P. 269-74.
177. Duan X. Y., Xie O. L., Ma Y. L., Tang S. Y. Omentin inhibits osteoblastic differentiation of valcifying vascular smooth muscle cells through the PI3K/Akt pathway. Amino Acids. 2011; 41 (5): P. 1223-31. 183. Xie H., Xie P. L., Wu X. P., Chen S. M., Zhou H. D., Yuan L. Q., Sheng Z. F., Tang S. Y., Luo X. H., Liao E. Y. Omentin-1 attenuates arterial calcification and bone loss in osteoprotegerin-deficient mice by inhibition of RANKL expression. Cardiovasc. Res. 2011; 92 (2): P. 296-306.
178. Hiromatsu-Ito M., Shbata R., Ohashi K. et al. Omentin attenuates atherosclerotic lesion formation in apolipoprotein E-deficient mice. Cardiovasc. Res. 2016; 110 (1): 107-117.
179. Stejskal D., Vaclavik J., Smekal A., Svobodova G., Richterova R., Svestak M. Omentin-1 levels in patients with premature coronary disease, metabolic syndrome and healthy controls. Short communication. Biomed. Pap. Med. 2016; 160 (1): P. 1-3.
180. Liu Y., Song C. Y., Wu S. S., Liang Q. H., Yuan L. Q., Liao E. Y. Novel adipokines and bone metabolism. Int. J. Endocrinol. 2013; 2013: Article ID 895045.
181. Bone H. G., Dempster D. W., Eisman J. A., Greenspan S. L., McClung R. M., Nakamura T., Papapoulos S., Shin W. J., Rybuk-Felglin A., Santora A. C., Verbruggen N., Leung A. T., Lombardi A. Odanacatib fort he treatment of postmenopausal osteoporosis: development history and design and participant characteristic of LOFT, the long-term odanacatib fracture trial. Osteoporosis Int. 2015; 26 (2): P. 699-21.
182. Bonnick S., DeVilliors T., Odio A., Palacios S., Chapurlat R., Da Silva C., Scott B. B., Le Bailly De Tilleghem C., Leung A. T., Gurner D. Effects of odanacatib on BMD and safety in the treatment of osteoporosis in postmenopausal women previously treated with alendronate: a randomized olacebo-controled trial. J. Clin. Endocrinol. Metab. 2013; 93 (12): P. 4727-35.
183. Langdahl B. L. New treatments of osteoporosis. Osteoporosis and Sarcopenia. 2015; 1 (1): P. 4-21. 190. Lin T., Wang C., Cai X. Z., Zhao X., Shi M. M., Ying Z. M., Yuan F. Z., Guo C., Yan S. G. Comparison of clinical efficacy and safety between denosumab and alendronate in postmenopausal women with osteoporosis. Int. J. Clin. Pract. 2012; 66 (4.): P. 399-408.
184. Silöos M., Ben AissaM., Thatcher G. R. J. Cysteine proteases as therapeutic targets: does selectivity matter?A systematic review of calpain and cathepsin inhibitors. Acta Pharmaceutica Sinica. 2015; 5 (6.): P. 506-19.
185. Podgorski I. Future of anticathepsin K drugs: dualtherapy for skeletal disease and atherosclerosis. Future Med. Chem. 2009; 1 (1): P.21-31.
186. Patent EP1841730A1 (USA). Cathepsin K inhibitors and atherosclerosis / M.D. Persival, publication 10.10.2007