Статья
МОЛЕКУЛЯРНО-ГЕНЕТИЧЕСКИЕ МАРКЕРЫ НАРУШЕНИЙ ЛИПИДНОГО ОБМЕНА И ВНЕЗАПНАЯ СЕРДЕЧНАЯ СМЕРТЬ
Внезапная сердечная смерть продолжает оставаться одной из нерешенных проблем современного здравоохранения. До 50 % летальных исходов вследствие сердечно-сосудистых заболеваний составляет внезапная сердечная смерть, при этом большинство умерших внезапно не имели ранее известного сердечно-сосудистого заболевания. С целью разработки качественной системы диагностики предрасположенности и профилактики развития внезапной сердечной смерти, в первую очередь у лиц без сердечной патологии в анамнезе, исследуются молекулярно-генетические маркеры внезапной сердечной смерти. Одним из факторов риска внезапной сердечной смерти является уровень липидов. В отношении ассоциации с внезапной сердечной смертью изучены однонуклеотидные полиморфизмы генов, ответственных за липидный обмен, таких как CETP, APOE, SREBF2, SCAP, LIPC, USF1, LDLR .
1. Priori S.G., Aliot E., Blømstrom-Lundqvist C. et al. The Task Force for the Management of Patients with Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death of the European Society of Cardiology (ESC) // G. Ital. Cardiol. 2016. Vol. 17, N 2. P. 108-170.
2. Шляхто Е.В., Арутюнов Г.П., Беленков Ю.Н. Национальные рекомендации по определению риска и профилактике внезапной сердечной смерти // Aрх. внутр. медицины. 2013. Т. 4, № 12. С. 5-15.
3. Buxton A.E., Waks J.W., Shen C. et al. Risk stratification for sudden cardiac death in North America - current perspectives // J. Electrocardiol. 2016.
4. Garg A. Primary prevention of sudden cardiac death - Challenge the guidelines // Indian Heart J. 2015. Vol. 67, N 3. P. 203-206.
5. Zhang S. Sudden cardiac death in China: current status and future perspectives // Europace. 2015. N 17, Suppl 2. ii14-8.
6. European detailed mortality database (DMDB) [Internet]. Available from:: http://data.euro.who.int/dmdb/ (cited 2016 Jan 30).
7. Winkel B.G., Risgaard B., Bjune T. et al. Gender differences in sudden cardiac death in the young-a nationwide study // BMC Cardiovasc. Disord. 2017. Vol. 17, N 1. P. 19.
8. Faragli A., Underwood K., Priori S.G. et al. Is There a Role for Genetics in the Prevention of Sudden Cardiac Death? // J. Cardiovasc. Electrophysiol. 2016.
9. Kunutsor S.K., Zaccardi F., Karppi J. et al. Is High Serum LDL/HDL Cholesterol Ratio an Emerging Risk Factor for Sudden Cardiac Death? Findings from the KIHD Study // J. Atheroscler. Thromb. 2016.
10. Tanaka F., Makita S., Onoda T. et al. Predictive value of lipoprotein indices for residual risk of acute myocardial infarction and sudden death in men with low-density lipoprotein cholesterol levels №120 mg/dl // Am. J. Cardiol. 2013. Vol. 112, N 8. P. 1063-1068.
11. Kozdag G., Ertas G., Emre E. et al. Low serum triglyceride levels as predictors of cardiac death in heart failure patients // Tex. Heart Inst. J. 2013. Vol. 40, N 5. P. 521-528.
12. Kunutsor S.K., Khan H., Nyyssönen K. et al. Lipoprotein(a) and risk of sudden cardiac death in middle-aged Finnish men: A new prospective cohort study // Int. J. Cardiol. 2016. N 220. P. 718-725.
13. Marian A.J. The enigma of genetics etiology of atherosclerosis in the post-GWAS era // Curr. Atheroscler. Rep. 2012. Vol. 14, N 4. P. 295-299.
14. Maroufi N.F., Farzaneh K., Alibabrdel M. et al. Taq1B Polymorphism of Cholesteryl Ester Transfer Protein (CETP) and Its Effects on the Serum Lipid Levels in Metabolic Syndrome Patients // Biochem. Genet. 2016. Vol. 54, N 6. P. 894-902.
15. Ganesan M., Nizamuddin S., Katkam S.K. et al. c.*84G>A Mutation in CETP Is Associated with Coronary Artery Disease in South Indians // PLoS One. 2016. Vol. 11, N 10. e0164151.
16. Agapakis D., Savopoulos C., Kypreos K.E. et al. Association of the CETP Taq1B and LIPG Thr111Ile Polymorphisms with Glycated Hemoglobin and Blood Lipids in Newly Diagnosed Hyperlipidemic Patients // Can. J. Diabetes. 2016. Vol. 40, N 6. P. 515-520.
17. Cyrus C., Vatte C., Al-Nafie A. et al. The impact of common polymorphisms in CETP and ABCA1 genes with the risk of coronary artery disease in Saudi Arabians // Hum. Genomics. 2016. N 10. P. 8.
18. Porchay-Baldérelli I., Péan F., Bellili N. et al. The CETP TaqIB polymorphism is associated with the risk of sudden death in type 2 diabetic patients // Diabetes Care. 2007. Vol. 30, N 11. P. 2863-2867.
19. Blankenberg S., Rupprecht H.J., Bickel C. et al. Common genetic variation of the cholesteryl ester transfer protein gene strongly predicts future cardiovascular death in patients with coronary artery disease // J. Am. Coll. Cardiol. 2003. N 41. P. 1983-1989.
20. Dose J., Huebbe P., Nebel F. et al. APOE genotype and stress response - a mini review // Lipids Health Dis. 2016. N 15. P. 121.
21. Machal J., Vasku A., Hlinomaz O. et al. Apolipoprotein E polymorphism is associated with both number of diseased vessels and extent of coronary artery disease in Czech patients with CAD // Biomed. Pap. Med. Fac. Univ. Palacky Olomouc. Czech Repub. 2012. Vol. 156, N 2. P. 151-158.
22. Wintjens R., Bozon D., Belabbas K. et al. Global molecular analysis and APOE mutations in a cohort of autosomal dominant hypercholesterolemia patients in France // J. Lipid. Res. 2016. Vol. 57, N 3. P. 482-491.
23. Tyynelä P., Goebeler S., Ilveskoski E. et al. Age-dependent interaction of apolipoprotein E gene with eastern birthplace in Finland affects severity of coronary atherosclerosis and risk of fatal myocardial infarction-Helsinki Sudden Death Study // Ann. Med. 2013. Vol. 45, N 3. P. 213-219.
24. El-Lebedy D., Raslan H.M., Mohammed A.M. et al. Apolipoprotein E gene polymorphism and risk of type 2 diabetes and cardiovascular disease // Cardiovasc. Diabetol. 2016. N 15. P. 12.
25. Koopal C., Geerlings M.I., Muller M. et al. The relation between apolipoprotein E (APOE) genotype and peripheral artery disease in patients at high risk for cardiovascular disease // Atherosclerosis. 2016. N 246. P. 187-192.
26. Takeichi S., Nakajima Y., Osawa M. et al. The possible role of remnant-like particles as a risk factor for sudden cardiac death // Int. J. Legal. Med. 1997. Vol. 110, N 4. P. 213-219.
27. Wang H., Zhang D., Ling J. et al. Gender specific effect of LIPC C-514T polymorphism on obesity and relationship with plasma lipid levels in Chinese children // J. Cell. Mol. Med. 2015. Vol. 19, N 9. P. 2296-2306.
28. Posadas-Sánchez R., Ocampo-Arcos W.A., López-Uribe Á.R. et al. Hepatic lipase (LIPC) C-514T gene polymorphism is associated with cardiometabolic parameters and cardiovascular risk factors but not with fatty liver in Mexican population // Exp. Mol. Pathol. 2015. Vol. 98, N 1. P. 93-98.
29. Verdier C., Ruidavets J.B., Bongard V. et al. Association of hepatic lipase -514T allele with coronary artery disease and ankle-brachial index, dependence on the lipoprotein phenotype: the GENES study // PLoS One. 2013. Vol. 8, N 7. e67805.
30. Fan Y., Lehtimaki T., Rontu R. et al. Age-dependent association between hepatic lipase gene C-480T polymorphism and the risk of pre-hospital sudden cardiac death: The Helsinki Sudden Death Study // Atherosclerosis. 2007. N 192. P. 421-427.
31. Deursen D., Leeuwen M., Vaulont S. et al. Upstream Stimulatory Factors 1 and 2 activate the human hepatic lipase promoter via E-box dependent and independent mechanisms // Biochim. Biophys. Acta. 2009. N 1791. P. 229-237.
32. Brown M., Goldstein J. The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor // Cell. 1997. Vol. 89, N 3. Р. 331-340.
33. Fan Y.M., Karhunen P., Levula M. et al. Expression of sterol regulatory element-binding transcription factor (SREBF) 2 and SREBF cleavage-activating protein (SCAP) in human atheroma and the association of their allelic variants with sudden cardiac death // Thrombosis J. 2008. N 6. P. 17.
34. Liu F.H., Song J.Y., Ma J. et al. Association of rs2228314 polymorphism in SREBP2 with serum lipid levels and obesity among children and adolescents // Beijing Da Xue Xue Bao. 2014. Vol. 46, N 3. P. 355-359.
35. Liu X., Li Y., Lu X. et al. Interactions among genetic variants from SREBP2 activating-related pathway on risk of coronary heart disease in Chinese Han population // Atherosclerosis. 2010. Vol. 208, N 2. P. 421-426.
36. Moon Y.A. The SCAP/SREBP Pathway: A Mediator of Hepatic Steatosis // Endocrinol. Metab. (Seoul). 2017.
37. Di Taranto M.D., Staiano A., D’Agostino M.N. et al. Association of USF1 and APOA5 polymorphisms with familial combined hyperlipidemia in an Italian population // Mol. Cell. Probes. 2015. Vol. 29, N 1. P. 19-24
38. Niemiec P., Nowak T., Iwanicki T. et al. The rs2516839 Polymorphism of the USF1 Gene May Modulate Serum Triglyceride Levels in Response to Cigarette Smoking // Int. J. Mol. Sci. 2015. Vol. 16, N 6. P. 13203-13216.
39. Kristiansson K., Ilveskoski E., Lehtimäki T. et al. Association analysis of allelic variants of USF1 in coronary atherosclerosis // Arterioscler. Thromb. and Vascular. Biol. 2008. N 28. P. 983-989.
40. Larsen M.K., Nissen P.H., Kristensen I.B. et al. Sudden cardiac death in young adults: environmental risk factors and genetic aspects of premature atherosclerosis // J. Forensic. Sci. 2012. Vol. 57, N 3. P. 658-662.
41. Gretarsdottir S., Helgason H., Helgadottir A. et al. A Splice Region Variant in LDLR Lowers Non-high Density Lipoprotein Cholesterol and Protects against Coronary Artery Disease // PLoS Genet. 2015. Vol. 11, N 9. e1005379.
42. Abd El-Aziz T.A., Mohamed R.H. LDLR, ApoB and ApoE genes polymorphisms and classical risk factors in premature coronary artery disease // Gene. 2016. Vol. 590, N 2. P. 263-269.
43. Fairoozy R.H., White J., Palmen J. et al. Identification of the Functional Variant(s) that Explain the Low-Density Lipoprotein Receptor (LDLR) GWAS SNP rs6511720 Association with Lower LDL-C and Risk of CHD // PLoS One. 2016. Vol. 11, N 2. e0167676.