1. Метаболический синдром. Ред. Г.Е. Ройтберг. М.: МЕД-пресс-информ, 2007. 224 с.
2. Подымова С.Д. Болезни печени. Руководство для врачей. 5-е изд., перераб. и доп. М.: Медицинское информационное агентство, 2018. 984 c.
3. Walsh K., Alexander G. Alcoholic liver disease. Postgrad. Med. J. 2000; 76 (895): 280–286.
4. Вовк Е.И. Лечение неалкогольной жировой болезни печени в практике терапевта: Что? Где? Когда? РМЖ: Рус. мед. журн. 2011; 11: 1038–1046.
5. Jia Y., Ji P., Nguyen L., French B., Tillman B., French S. Different roles of epigenetic regulators and inflammasome in hepatocellular carcinoma tumorigenesis in patients with ASH vs. NASH. Exp. Biol. 2019; A67: 662–667.
6. Радченко В.Г., Шабров А.В., Зиновьева Е.Н., Ситкин С.И. Заболевания печени и желчевыводящих путей: руководство для врачей. СПб.: СпецЛит, 2011. 560 с.
7. Кручинина М.В., Кручинин В.Н., Прудникова Я.И., Громов А.А., Шашков М.В., Соколова А.С. Исследование уровня жирных кислот мембран эритроцитов и сыворотки крови у пациентов с колоректальным раком г. Новосибирска. Успехи молекуляр. онкологии. 2018; 5 (2): 50–61.
8. Новицкий В.В., Рязанцева Н.В., Степовая Е.А. Физиология и патофизиология эритроцита. Томск: Наука, 2004. 202 c.
9. Arab L., Akbar J. Biomarkers and the measurement of fatty acids. Public Health Nutr. 2002; (5): 865–871.
10. Zeleniuch-Jacquotte A., Chajes V., Van Kappel A.L., Riboli E., Toniolo P. Reliability of fatty acid composition in human serum phospholipids. Eur. J. Clin. Nutr. 2000; 54: 367–372.
11. Katan M.B., van Birgelen A., Deslypere J.P., Penders M., van Staveren W.A. Biological markers of dietary intake, with emphasis on fatty acids. Ann. Nutr. Metab. 1991; 35: 249–252.
12. Osna N.A., Donohue T.M., Jr., Kharbanda K.K. Alcoholic liver disease: Pathogenesis and current management. Alcohol Res. 2017; 38 (2): 7–21.
13. Guo C., Сhend L., Huang J., Wang Y., Shi C., Gao J., Hong Y., Chen T., Qiu L. Aldose reductase inhibitor protects mice from alcoholic steatosis by repressing saturated fatty acid biosynthesis. Chem. Biol. Interact. 2018; 287: 41–48.
14. Fernando H., Bhopale K.K., Boor P.J., Shakeel Ansari G.A., Kaphalia B.S. Hepatic lipid profiling of deer mice fed ethanol using 1H and 31P NMR spectroscopy: a dose-dependent subchronic study. Toxicol. Appl. Pharmacol. 2012; 264: 361–369.
15. Mezey E. Dietary fat and alcoholic liver disease. Hepatology. 1998; 28: 901–905.
16. Nanji A.A. Role of different dietary fatty acids in thepathogenesis of experimental alcoholic liver disease. Alcohol. 2004; 34: 21–25.
17. Kirpich I.A., Miller M.E., Cave M.C., Joshi-Barve S., McClain C.J. Alcoholic liver disease: update on the role of dietaryfat. Biomolecules. 2016; 6: 1–12.
18. Griffith C.M., Schenker S. The role of nutritional therapy in alcoholic liver disease. Alcohol Res. Health. 2006; 29 (4): 296–306.
19. Fernando H., Bhopale K.K., Kondraganti S.S., Kaphalia B., Ansari G. Alcohol-induced hepatic steatosis: A comparative study to identify possible indicator(s) of alcoholic fatty liver disease. J. Drug Alcohol Res. 2018; 7: 236040(5).
20. Wanga M., Zhanga X., Maa L., Fenga R., Yanb C., Sua H., Hea C., Kangc J.X., Liud B., Wan J. Omega-3 polyunsaturated fatty acids ameliorate ethanol-induced adipose hyperlipolysis: A mechanism for hepatoprotective effect against alcoholic liver disease. Biochim. Biophys. Acta Mol. Basis Dis. 2017; 1863 (12): 3190–3201.
21. Zhong Z., Lemasters J.J. A Unifying hypothesis linking hepatic adaptations for ethanol metabolism to the proinflammatory and profibrotic events of alcoholic liver disease. Alcohol Clin. Exp. Res. 2018; 42 (11): 2072–2089.
22. Guo C., Ma J., Zhong Q., Zhao M., Hu T., Chen T., Qiu L., Wen L. Curcumin improves alcoholic fatty liver by inhibiting fatty acid biosynthesis. Toxicol. Appl. Pharmacol. 2017; 328: 1–9.
23. Hasaba A., Cluette-Brown J.E., Laposata M. Stearic acid stimulates FA ethyl ester synthesis in HepG2 cells exposed to ethanol. Lipids. 2003; 38: 1051–1055.
24. Ziamajidi N., Khaghani S., Hassanzadeh G., Vardasbi S., Ahmadian S., Nowrouzi A., Ghaffari S.M., Abdirad, A. Amelioration by chicory seed extract of diabetes- and oleic acid-induced non-alcoholic fatty liver disease (NAFLD)/non-alcoholic steatohepatitis (NASH) via modulation of PPARα and SREBP-1. Food Chem. Toxicol. 2013; 58: 198–209.
25. Nanji A.A., French S.W. Dietary linoleic acid is required for development of experimentally induced alcoholic liver injury. Life Sci. 1989; 44: 223–227.
26. Lounis M.A., Escoula Q., Veillette C., Bergeron K.F., Ntambi J.M., Mounier C. SCD1 deficiency protects mice against ethanol-induced liver injury. Biochim. Biophys. Acta. 2016; 1861: 1662–1670.
27. Shi H., Kokoeva M.V., Inouye K., Tzameli I., Yin H., Flier J.S. TLR4 links innate immunity and fatty acidinduced insulin resistance. J. Clin. Invest. 2006; 116: 3015–3025.
28. Leamy A.K., Egnatchik R.A., Young J.D. Molecular mechanisms and the role of saturated fatty acids in the progression of non-alcoholic fatty liver disease. Prog. Lipid Res. 2013; 52 (1): 165–174.
29. Noguchi Y., Young J.D., Aleman J.O., Hansen M.E., Kelleher J.K., Stephanopoulos G. Effect of anaplerotic fluxes and amino acid availability on hepaticlipoapoptosis. J. Biol. Chem. 2009; 284: 33425–33436.
30. Hardy S., El-Assaad W., Przybytkowski E., Joly E., Prentki M., Langelier Y. Saturated fatty acid-induced apoptosis in MDA-MB-231 breast cancer cells – A role for cardiolipin. J. Biol. Chem. 2003; 278: 31861–31870.
31. Turpin S., Lancaster G., Darby I., Febbraio M., Watt M. Apoptosis in skeletalmuscle myotubes is induced by ceramides and is positively related to insulinresistance. Am. J. Physiol. Endocrinol. Metab. 2006; 291: E1341–E1350.
32. Okere I., Chandler M., McElfresh T., Rennison J.H., Sharov V., Sabbah H.N., Tserng K.Y., Hoit B.D., Ernsberger P., Young M.E., Stanley W.C. Differential effects of saturated and unsaturated fatty acid diets oncardiomyocyte apoptosis, adipose distribution, and serum leptin. Am. J. Physiol. Heart Circ. Physiol. 2006; 291: H38–H44.
33. Srivastava S., Chan C. Application of metabolic flux analysis to identify themechanisms of free fatty acid toxicity to human hepatoma cell line. Biotechnol. Bioeng. 2008; 99: 399–410.
34. Pagliassotti M., Wei Y., Wang D. Saturated fatty acids induce cytotoxicity inhepatocytes via effects on the endoplasmic reticulum. Obesity Res. 2005; 13: A31–A35.
35. Borradaile N.M., Han X., Harp J.D., Gale S.E., Ory D.S., Schaffer J.E. Disruption o endoplasmic reticulum structure and integrity in lipotoxic cell death. J. Lipid Res. 2006; 47: 2726–2737.
36. Cazanave S.C., Mott J.L., Elmi N.A., Bronk S.F., Werneburg N.W., Akazawa Y., Kahraman A., Garrison S.P., Zambetti G.P., Charlton M.R., Gores G.J. JNK1-dependent PUMA expression contributes to hepatocyte lipoapoptosis. J. Biol. Chem. 2009; 284: 26591–26602.
37. Listenberger L., Han X., Lewis S., Cases S., Farese R.V., Jr., Ory D.S., Schaffer J.E. Triglyceride accumulation protects against fatty acid-induced lipotoxicity. Proc. Natl. Acad. Sci. USA. 2003; 100: 3077–3082.
38. Listenberger L.L., Ory D.S., Schaffer J.E. Palmitateinduced apoptosis can occur through a ceramide-independent pathway. J. Biol. Chem. 2001; 276: 14890– 14895.
39. Enoch H.G., Catala A., Strittmatter P. Mechanism of rat-liver microsomalsteroyl-CoA desaturase – Studies of substrate specificity, enzyme substrate interactions, and function of lipid. J. Biol. Chem. 1976; 251: 5095–5103.
40. Miyazaki M., Man W.C., Ntambi J.M. Targeted disruption of stearoyl-CoAdesaturase1 gene in mice causes atrophy of sebaceous and meibomian glandsand depletion of wax esters in the eyelid. J. Nutr. 2001; 131: 2260–2268.
41. Li Z.Z., Berk M., McIntyre T.M., Feldstein A.E. Hepatic lipid partitioning and liverdamage in nonalcoholic fatty liver disease – Role of stearoyl-CoA desaturase. J. Biol. Chem. 2009; 284: 5637–5644.
42. Rizki G., Arnaboldi L., Gabrielli B., Yan J., Lee G.S., Ng R.K., Turner S.M., Badger T.M., Pitas R.E., Maher J.J. Mice fed a lipogenic methionine-choline-deficient diet develop hypermetabolism coincident with hepatic suppression of SCD-1. J. Lipid Res. 2006; 47 (10): 2280–2290.
43. Schaffer J.E. Lipotoxicity: when tissues overeat. Cur. Opin. Lipidol. 2003; 14: 281–287.
44. Clarke S.D. Nonalcoholic steatosis and steatohepatitis. I. Molecular mechanism for polyunsaturated fatty acid regulation of gene transcription. Am. J. Physiol. Gastrointest. Liver Physiol. 2001; 281: G865–G869.
45. Delarue J., Lefoll C., Corporeau C., Lucas D. n-3 long chainpolyunsaturated fatty acids: a nutritional tool to prevent in-sulin resistance associated to type 2 diabetes and obesity. Reprod. Nutr. Dev. 2004; 44: 289–299.
46. Simopoulos A.P. The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomed. Pharmacother. 2002; 56: 365–379.
47. Leonard A.E., Pereira S.L., Sprecher H., Huang Y.S. Elongation of long-chain fatty acids. Prog. Lipid Res. 2004; 43: 36–54.
48. Tinoco J., Babcock R., Hincenbergs I., Medwadowski B., Miljanich P. Linolenic acid deficiency: changes in fatty acid patterns in female and male rats raised on a linolenic acid deficient diet for two generations. Lipids. 1978; 13: 6–17.
49. Connor W.E., Neuringer M., Lin D.S. Dietary effects on brain fatty acid composition: the reversibility of n-3 fatty acid deficiency and turnover of docosahexaenoic acid in the brain, erythrocytes, and plasma of rhesus monkeys. J. Lipid Res. 1990; 31: 237–247.
50. Greiner R.S., Catalan J.N., Moriguchi T., Salem N.Jr. Docosapentaenoic acid does not completely replace DHA in n-3FA-deficient rats during early development. Lipids. 2003; 38: 431–435.
51. Moriguchi T., Loewke J., Garrison M., Catalan J.N., Salem N., Jr. Reversal of docosahexaenoic acid deficiency in the ratbrain, retina, liver, and serum. J. Lipid Res. 2001; 42: 419–427.
52. Makrides M., Neumann M.A., Byard R.W., Simmer K., Gibson R.A. Fatty acid composition of brain, retina, and erythrocytes in breast- and formula-fed infants. Am. J. Clin. Nutr. 1994; 60: 189–194.
53. Jamieson E.C., Farquharson J., Logan E.C., Farquharson J., Logan R.W., Howatson A.G., Patrick W.J., Weaver L.T., Cockburn F. Infant cerebellar gray and white matter fatty acids in relation to age and diet. Lipids. 1999; 34 (10): 1065–1071.
54. Infante J.P., Huszagh V.A. Analysis of the putative role of 24-carbon polyunsaturated fatty acids in the biosynthesis ofdocosapentaenoic (22:5n-6) and docosahexaenoic (22:6n-3) acids. FEBS Lett. 1998; 431: 1–6.
55. Sprecher H. Metabolism of highly unsaturated n-3 and n-6 fatty acids. Biochim. Biophys. Acta. 2000; 1486: 219–231.
56. Lim S.Y., Hoshiba J., Salem N., Jr. An extraordinary degree ofstructural specificity is required in neural phospholipids foroptimal brain function: n-6 docosapentaenoic acid substitutionfor docosahexaenoic acid leads to a loss in spatial task performance. J. Neurochem. 2005; 95: 848–857.
57. Elizondo A., Araya J., Rodrigo R., Poniachik J., Csendes A., Maluenda F., Diaz J.C., Signorini C., Sgherri C., Comporti M., Videla L.A. Polyunsaturated fatty acid pattern in liver and erythrocyte phospholipids from obese patients. Obesity. 2007; 15: 24–31.
58. Das U.N. A defect in the activity of Delta6 and Delta5 desaturases may be a factor predisposing to the development ofinsulin resistance syndrome. Prostaglandins Leukot. Essent. Fatty Acids. 2005; 72: 343–350.
59. Sui Y.H, Luo W.J., Xu Q.Y., Hua J. Dietary saturated fatty acid and polyunsaturated fatty acid oppositely affect hepatic NOD-like receptor protein 3 inflammasome through regulating nuclear factor-kappa B activation. World J. Gastroenterol. 2016: 22 (8): 2533–2544.
60. Csak T., Ganz M., Pespisa J., Kodys K., Dolganiuc A., Szabo G. Fatty acid and endotoxin activate inflammasomes in mouse hepatocytes that release danger signals to stimulate immune cells. Hepatology. 2011; 54 (1): 133–144.