1. Morin D.P., Homoud M.K., Estes N.A.M. 3rd. Prediction and Prevention of sudden cardiac death. Card. Electrophysiol. Clin., 2017; 9 (4): 631–638. doi: 10.1016/j.ccep.2017.07.012
2. Jazayeri M.A., Emert M.P. Sudden cardiac death: who is at risk? Med. Clin. North Am., 2019; 103 (5): 913–930. doi: 10.1016/j.mcna.2019.04.006
3. Шляхто Е.В., Арутюнов Г.П., Беленков Ю.Н., Ардашев А.В. Национальные Рекомендации по определению риска и профилактике внезапной сердечной смерти. Арх. внутр. медицины, 2013; (4): 5–15. doi: 10.20514/2226–6704–2013–0–4–5–15
4. Skinner J.R., Winbo A., Abrams D., Vohra J., WildeA.A. channelopathies that lead to sudden cardiac death: clinical and genetic aspects. Heart Lung. Circ., 2019; 28 (1): 22–30. doi: 10.1016/j.hlc.2018.09.007
5. Stallmeyer B., Dittmann S., Schulze-Bahr E. Genetische Diagnostik zur Vermeidung des plötzlichen Herztods. Internist (Berl)., 2018; 59 (8): 776–789. doi: 10.1007/s00108–018–0462-x.
6. Бабенко В.Н., Максимов В.Н., Кулакова Е.В., Сафронова Н.С., Воевода М.И., Рогаев Е.И. Полногеномный анализ пулированных выборок ДНК когорт человека. Вавил. журн. Генетики и селекции, 2014. Т. 18б, № 4–2. С. 847–855.
7. Priori S.G., Blomström-Lundqvist C., Mazzanti A., Blom N., Borggrefe M., Camm J., Elliott P.M., Fitzsimons D., Hatala R., Hindricks G., Kirchhof P., Kjeldsen K., Kuck K.H., Hernandez-Madrid A., Nikolaou N., Norekvål T.M., Spaulding C., van Veldhuisen D.J. ESC Scientific Document Group. 2015 ESC Guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: The Task Force for the Management of Patients with Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death of the European Society of Cardiology (ESC). Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC). Eur. Heart J., 2015; 36 (41): 2793–2867. doi: 10.1093/eurheartj/ehv316
8. rs10867772. dbSNP. https://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?do_not_redirect&rs=rs10867772 (21 December 2020)
9. TLE1 TLE family member 1, transcriptional corepressor [Homo sapiens (human)]. dbGene. https://www.ncbi.nlm.nih.gov/gene/7088 (24 December 2020)
10. Huopio H., Cederberg H., Vangipurapu J., Hakkarainen H., Pääkkönen M., Kuulasmaa T., Heinonen S., Laakso M. Association of risk variants for type 2 diabetes and hyperglycemia with gestational diabetes. Eur. J. Endocrinol., 2013; 169 (3): 291–7. doi: 10.1530/EJE13–0286
11. Armour S.L., Anderson S.J., Richardson S.J., Ding Y., Carey C., Lyon J., Maheshwari R.R., Al-Jahdami N., Krasnogor N., Morgan N.G., MacDonald P., Shaw J.A.M., White M.G. Reduced expression of the co-regulator TLE1 in type 2 diabetes is associated with increased islet α-cell number. Endocrinology., 2020; 161 (4): bqaa011. doi: 10.1210/endocr/bqaa011
12. rs4700290. dbSNP. https://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?do_not_redirect&rs=rs4700290 (21 December 2020)
13. PLK2 polo like kinase 2 [Homo sapiens (human)]. dbGene. https://www.ncbi.nlm.nih.gov/gene/10769 (24 December 2020)
14. GAPT GRB2 binding adaptor protein, transmembrane [Homo sapiens (human)]. dbGene. https://www.ncbi.nlm.nih.gov/gene/202309 (24 December 2020)
15. Zhao D., Shun E., Ling F., Liu Q., WarsiA., Wang B., Zhou Q., Zhu C., Zheng H., Liu K., Zheng X. Plk2 Regulated by miR 128 induces ischemia-¬reperfusion injury in cardiac cells. Mol. Ther. Nucleic Acids., 2020; 19: 458–467. doi: 10.1016/j.omtn.2019.11.029
16. Mochizuki M., Lorenz V., Ivanek R., Della Verde G., Gaudiello E., Marsano A., Pfister O., Kuster G.M. Polo-like kinase 2 is dynamically regulated to coordinate proliferation and early lineage specification downstream of yes-associated protein 1 in cardiac progenitor cells. J.Am. Heart Assoc., 2017; 6 (10): e005920. doi: 10.1161/JAHA.117.005920