Цель. Разработка алгоритма отбора предикторов и моделей прогнозирования фибрилляции предсердий (ФП) у больных ишемической болезнью сердца (ИБС) после коронарного шунтирования (КШ).Материал и методы. Проведено ретроспективное исследование по данным 886 историй болезни пациентов с ИБС в возрасте от 35 до 81 года с медианой 63 года, которым выполнялось изолированное КШ в условиях искусственного кровообращения. Из исследования были исключены 85 больных с ФП в анамнезе. Было выделено 2 группы лиц, первую из которых составили 153 (19,1%) больных с впервые зарегистрированными пароксизмами ФП, вторую — 648 (80,9%) больных без нарушения сердечного ритма. Дооперационный клинико-функциональный статус оценивали с помощью 100 факторов. Для обработки и анализа данных использовали методы хи-квадрат, Фишера, Манна-Уитни, однофакторную логистическую регрессию (ЛР), а для разработки прогностических моделей — многофакторную ЛР и искусственные нейронные сети (ИНС). Границы прогностически значимых диапазонов потенциальных предикторов определяли путем пошаговой оценки отношения шансов и p-value. Точность моделей оценивали по 4 метрикам: площадь под ROC-кривой (AUC), чувствительность, специфичность и точность.Результаты. Комплексный анализ показателей дооперационного статуса больных позволил выделить 11 факторов с наибольшим предиктивным потенциалом, линейно и нелинейно связанных с развитием послеоперационной ФП (ПоФП). К ним относились возраст (55-74 года для мужчин и 60-78 лет — для женщин), передне-задний и верхне-нижний размеры левого предсердия, поперечный и продольный размеры правого предсердия, недостаточность трикуспидального клапана, конечный систолический размер левого желудочка >49 мм, RR 1000-1100 мс, PQ 170-210 мс, QRS 50-80 мс, QT (>420 мс для мужчин и >440 мс — для женщин) и хроническая сердечная недостаточность с фракцией выброса 45-60%. Метрики лучшей прогностической модели ИНС составили по AUC 0,75, специфичности 0,73, чувствительности 0,74 и точности 0,73. Значения большинства показателей лучшей модели на основе многофакторной ЛР были ниже (0,75; 0,7; 0,68 и 0,7, соответственно).Заключение. Разработанный алгоритм отбора предикторов позволил верифицировать их прогностически значимые числовые диапазоны и весовые коэффициенты, характеризующие степень влияния на развитие ПоФП. Прогностическая модель на основе ИНС обладает более высокой точностью по сравнению с многофакторной ЛР.
1. Villareal RP, Hariharan R, Liu BC, et al. Postoperative atrial fibrillation and mortality after coronary artery bypass surgery. J Am Coll Cardiol. 2004;43:742-8. doi:10.1016/j.jacc.2003.11.023.
2. Maisel WH, Rawn JD, Stevenson WG. Atrial fibrillation after cardiac surgery. Ann Intern Med. 2001;135:1061-73. doi:10.7326/0003-4819-135-12-200112180-00010.
3. Mathew JP, Fontes ML, Tudor IC, et al. A multicenter risk index for atrial fibrillation after cardiac surgery. JAMA. 2004;291:1720-9. doi:10.1001/jama.291.14.1720.
4. Ревишвили А.Ш., Попов В.А., Коростелев А.Н. и др. Предикторы развития фибрилляции предсердий после операции аортокоронарного шунтирования. Вестник аритмологии. 2018;(94):11-6. doi:10.25760/VA-2018-94-11-16.
5. Ломиворотов В. В., Ефремов С. М., Покушалов Е. А. и др. Фибрилляция предсердий после кардиохирургических операций: патофизиология и методы профилактики. Вестник анестезиологии и реаниматологии. 2017;14(1):58-66. doi:10.21292/2078-5658-2017-14-1-58-66.
6. Greenberg JW, Lancaster TS, Schuessler RB, et al. Postoperative atrial fibrillation following cardiac surgery: a persistent complication. Eur J Cardiothorac Surg. 2017;52(4):665-72. doi:10.1093/ejcts/ezx039.
7. Бокерия Л.А., Сокольская Н.О., Копылова Н.С. и др. Эхокардиографические предикторы тяжести течения раннего послеоперационного периода у больных после хирургической реваскуляризации миокарда. Анестезиология и реаниматология. 2015;60(5):8-11.
8. Dogan A, Gunesdogdu F, Sever K, et al. Atrial fibrillation prediction by surgical risk scores following isolated coronary artery bypass grafting surgery. J Coll Physicians Surg Pak. 2019;29(11):1038-42. doi:10.29271/jcpsp.2019.11.1038.
9. Thoren E, Wernroth M, Christersson C, et al. Compared with matched controls, patients with postoperative atrial fibrillation (POAF) have increased long-term AF after CABG, and POAF is further associated with increased ischemic stroke, heart failure and mortality even after adjustment for AF. Clin Res Cardiol (2020). 2020;109(10):1232-1242. doi:10.1007/s00392-020-01614-z.
10. Shao Q, Chen K, Rha SW, et al. Usefulness of Neutrophil/Lymphocyte Ratio as a Predictor of Atrial Fibrillation: A Meta-analysis. Arch Med Res. 2015;46(3):199-206. doi:10.1016/j.arcmed.2015.03.011.
11. Kolek MJ, Muehlschlegel JD, Bush WS, et al. Genetic and clinical risk prediction model for postoperative atrial fibrillation. Circ Arrhythm Electrophysiol. 2015;8(1):25-31. doi:10.1161/CIRCEP.114.002300.
12. Lin SZ, Crawford TC, Suarez-Pierre A, et al. A Novel Risk Score to Predict New Onset Atrial Fibrillation in Patients Undergoing Isolated Coronary Artery Bypass Grafting. Heart Surg Forum. 2018;21(6):E489-E496. doi:10.1532/hsf.2151.
13. Mariscalco G, Biancari F, Zanobini M, et al. Bedside tool for predicting the risk of postoperative atrial fibrillation after cardiac surgery: the POAF score. J Am Heart Assoc. 2014;3(2):e000752. doi:10.1161/JAHA.113.000752.
14. Burgos LM, Seoane L, Parodi JB, et al. Postoperative atrial fibrillation is associated with higher scores on predictive indices. J Thorac Cardiovasc Surg. 2019;157(6):2279-86. doi:10.1016/j.jtcvs.2018.10.091.
15. Гельцер Б. И., Циванюк М. М., Шахгельдян К. И. и др. Методы машинного обучения как инструмент диагностических и прогностических исследований при ишемической болезни сердца. Российский кардиологический журнал. 2020;25(12):3999. doi:10.15829/1560-4071-2020-3999.
16. Steele AJ, Denaxas SC, Shah AD, et al. Machine learning models in electronic health records can outperform conventional survival models for predicting patient mortality in coronary artery disease. PLOS ONE. 2018;13(8):e0202344. doi:10.1371/journal.pone.0202344.
17. Galderisi M, Cosyns B, Edvardsen T, et al. Standardization of adult transthoracic echocardiography reporting in agreement with recent chamber quantification, diastolic function, and heart valve disease recommendations: An expert consensus document of the European Association of Cardiovascular Imaging. European Heart Journal — Cardiovascular Imaging. 2017;18(12):1301-10. doi:10.1093/ehjci/jex244.
18. Jiamsripong P, Honda T, Reuss CS, et al. Three methods for evaluation of left atrial volume. Eur J Echocardiogr. 2008;9(3):351-5. doi:10.1016/j.euje.2007.05.004.
19. Гельцер Б.И., Шахгельдян К. И., Рублев В. Ю. и др. Методы машинного обучения в прогнозировании летальных исходов в стационаре у больных ишемической болезнью сердца после коронарного шунтирования. Кардиология. 2020;60(10):38-46. doi:10.18087/cardio.2020.10.n1170.
20. Ozben B, Akaslan D, Sunbul M, et al. Postoperative Atrial Fibrillation after Coronary Artery Bypass Grafting Surgery: A Two-dimensional Speckle Tracking Echocardiography Study. Heart Lung Circ. 2016;25(10):993-9. doi:10.1016/j.hlc.2016.02.003.
21. Xiong F, Yin Y, Dube B, et al. Electrophysiological changes preceding the onset of atrial fibrillation after coronary bypass grafting surgery. PLoS One. 2014;9(9):e107919. doi:10.1371/journal.pone.0107919.
22. Sigurdsson MI, Muehlschlegel JD, Fox AA, et al. Genetic Variants Associated with Atrial Fibrillation and PR Interval Following Cardiac Surgery. J Cardiothorac Vasc Anesth. 2015;29(3):605-10. doi:10.1053/j.jvca.2014.10.028.
23. Ad N, Holmes SD, Patel J, et al. Comparison of EuroSCORE II, Original EuroSCORE, and The Society of Thoracic Surgeons Risk Score in Cardiac Surgery Patients. Ann Thorac Surg. 2016;102(2):573-9. doi:10.1016/j.athoracsur.2016.01.105.
24. Шахгельдян К. И., Рублев В. Ю., Гельцер Б. И. и др. Оценка предиктивного потенциала дооперационных факторов риска фибрилляции предсердий у больных ишемической болезнью сердца после коронарного шунтирования. Сибирский журнал клинической и экспериментальной медицины. 2020;35(4):128-36. doi:10.29001/2073-8552-2020-35-4-128-136.