%0 %A Гельцер, Б. И. %A Рублев, В. Ю. %A Циванюк, М. М. %A Шахгельдян, К. И. %T Машинное обучение в прогнозировании ближайших и отдаленных результатов реваскуляризации миокарда: систематический обзор %D 2021 %R 10.15829/1560-4071-2021-4505 %J Российский кардиологический журнал %X Методы машинного обучения (МО) относятся к основным инструментам искусственного интеллекта и все шире используются в популяционной и клинической кардиологии для стратификации рисков развития сердечно-сосудистых заболеваний и их осложнений. В систематическом обзоре представлен анализ научной литературы по результатам использования различных методов МО (искусственных нейронных сетей, случайного леса, стохастического градиентного бустинга, машины опорных векторов и др.) для разработки прогностических моделей, определяющих риск развития неблагоприятных событий в ближайшем и отдаленном периодах после коронарного шунтирования и чрескожных коронарных вмешательств. Большинство исследований по данной проблеме сосредоточено на создании новых прогностических моделей c более высокой предсказательной ценностью, что является базовым условием для их внедрения в клиническую практику. Подчеркивается, что совершенствование технологий моделирования и разработка на этой основе практико-ориентированных инструментов поддержки принятия врачебных решений относится к одному из наиболее перспективных направлений цифровизации здравоохранения, востребованных в повседневной профессиональной деятельности. %U https://www.cardiojournal.online/publication/9250