Статья
Значение вегетативной нервной системы в патогенезе фибрилляции предсердий
Целью настоящего обзора явилось исследование роли вегетативной нервной системы в патогенезе фибрилляции предсердий (ФП), а также установление взаимосвязи вегетативной регуляции с другими механизмами, лежащими в основе возникновения и поддержания ФП. В настоящее время точно не установлены молекулярные и клеточные механизмы, лежащие в основе ФП. Вызывают интерес данные, свидетельствующие, что провоцировать и поддерживать приступы ФП могут как симпатические влияния, так и повышение тонуса блуждающего нерва. Как показали современные исследования, вегетативная регуляция сердца может являться важным фактором в патогенезе ФП.
1. Chugh SS, Havmoeller R, Narayanan K, et al. Worldwide epidemiology of atrial fibrillation: a global burden of disease 2010 study. Circulation. 2014;129:837-47. doi: 10.1161/CIRCULATIONAHA.113.005119.
2. Wyse DG, Van Gelder IC, Ellinor PT, et al. Lone atrial fibrillation: does it exist? J. Am. Coll. Cardiol. 2014;63:1715-23. doi:10.1016/j.jacc.2014.01.023.
3. Kirchhof P, Ammentorp B, Darius H, et al. Management of atrial fibrillation in seven European countries after the publication of the 2010 ESC guidelines on atrial fibrillation: primary results of the PREvention oF thromboemolic events-European Registry in Atrial Fibrillation (PREFER in AF). Europace. 2014;16(1):6-14. doi:10.1093/europace/eut263.
4. Enriquez A, Liang JJ, Santangeli P, et al. Focal atrial fibrillation from the superior vena cava. J. Atr. Fibrillation. 2017;9:1593. doi:10.4022/jafib.1593.
5. Klos M, Calvo D, Yamazaki M, et al. Atrial septopulmonary bundle of the posterior left atrium provides a substrate for atrial fibrillation initiation in a model of vagally mediated pulmonary vein tachycardia of the structurally normal heart. Circ. Arrhythm. Electrophysiol. 2008;1(3):175-83. doi:10.1161/CIRCEP.107.760447.
6. Tanaka K, Zlochiver S, Vikstrom KL, et al. Spatial distribution of fibrosis governs fibrillation wave dynamics in the posterior left atrium during heart failure. Circ. Res. 2007;101:839-47. doi:10.1161/CIRCRESAHA.107.153858.
7. Atienza F, Almendral J, Ormaetxe JM, et al. Investigators Comparison of radiofrequency catheter ablation of drivers and circumferential pulmonary vein isolation in atrial fibrillation: a noninferiority randomized multicenter RADAR-AF trial. J. Am. Coll. Cardiol. 2014;64(23):2455-67. doi:10.1016/j.jacc.2014.09.053.
8. Perez-Lugones A, McMahon JT, Ratliff NB, et al. Evidence of specialized conduction cells in human pulmonary veins of patients with atrial fibrillation. J. Cardiovasc. Electrophysiol. 2003;14:803-9. doi:10.1046/j.1540-8167.2003.03075.x.
9. Gherghiceanu M, Hinescu ME, Andrei F, et al. Interstitial Cajal-like cells (ICLC) in myocardial sleeves of human pulmonary veins. J. Cell. Mol. Med. 2008;12:1777-81. doi:10.1111/j.1582-4934.2008.00444.x.
10. Moe GK, Abildskov JA. Atrial fibrillation as a self-sustaining arrhythmia independent of focal discharge. Am. Heart J. 1959;58:59-70. doi:10.1016/0002-8703(59)90274-1.
11. Cox JL, Boineau JP, Schuessler RB, et al. Successful surgical treatment of atrial fibrillation. Review and clinical update. JAMA. 1991;266(14):1976-80.
12. De Groot N, van der Does L, Yaksh A, et al. Direct proof of endoepicardial asynchrony of the atrial wall during atrial fibrillation in humans. Circ. Arrhythm. Electrophysiol. 2016 ;9(5). e003648. doi:10.1161/CIRCEP.115.003648.
13. Narayan SM, Jalife J. CrossTalk proposal: rotors have been demonstrated to drive human atrial fibrillation. J. Physiol. 2014;592:3163-6. doi:10.1113/jphysiol.2014.271031.
14. Calvo D, Rubin J, Perez D, Moris C. Ablation of rotor domains effectively modulates dynamics of human: long-standing persistent atrial fibrillation. Circ. Arrhythm. Electrophysiol. 2017;10:e005740. doi:10.1161/CIRCEP.117.005740.
15. Wit AL, Boyden PA. Triggered activity and atrial fibrillation. Heart Rhythm. 2007;4(3):17-23. doi:10.1016/j.hrthm.2006.12.021.
16. Wang TM, Chiang CE, Sheu JR, et al. Homogenous distribution of fast response action potentials in canine pulmonary vein sleeves: a contradictory report. Int. J. Cardiol. 2003;89:187-95. doi:10.1016/s0167-5273(02)00474-6.
17. Arora R, Verheule S, Scott L, et al. Arrhythmogenic substrate of the pulmonary veins assessed by highresolution optical mapping. Circulation. 2003;107:1816-21. doi:10.1161/01.CIR.0000058461.86339.7E.
18. Patterson E, Lazzara R, Szabo B, et al. Sodium-calcium exchange initiated by the Ca2+ transient: an arrhythmia trigger within pulmonary veins. J. Am. Coll. Cardiol. 2006;47:1196-206. doi:10.1016/j.jacc.2005.12.023.
19. Caballero R, de la Fuente MG, Gomez R, et al. In humans, chronic atrial fibrillation decreases the transient outward current and ultrarapid component of the delayed rectifier current differentially on each atria and increases the slow component of the delayed rectifier current in both. J. Am. Coll. Cardiol. 2010;55:2346-54. doi:10.1016/j.jacc.2010.02.028.
20. Atienza F, Almendral J, Moreno J, et al. Activation of inward rectifier potassium channels accelerates atrial fibrillation in humans: evidence for a reentrant mechanism. Circulation. 2006;114:2434-42. doi:10.1161/CIRCULATIONAHA.106.633735.
21. Martins RP, Kaur K, Hwang E, et al. Dominant frequency increase rate predicts transition from paroxysmal to long-term persistent atrial fibrillation. Circulation. 2014;129:1472-82. doi:10.1161/CIRCULATIONAHA.113.004742.
22. Munoz V, Grzeda KR, Desplantez T, et al. Adenoviral expression of IKs contributes to wavebreak and fibrillatory conduction in neonatal rat ventricular cardiomyocyte monolayers. Circ. Res. 2007;101:475-83. doi:10.1161/CIRCRESAHA.107.149617.
23. Armour JA. Potential clinical relevance of the “little brain” on the mammalian heart. Exp. Physiol. 2008;93:165-76. doi:10.1113/expphysiol.2007.041178.
24. Привес М. Г., Лысенков Н. К., Бушкович В. И. Анатомия человека. Учебник. Санкт-Петербург: Издательский дом СПб МАПО. 2004; с. 720.
25. Choi EK, Shen MJ, Han S, et al. Intrinsic cardiac nerve activityand paroxysmal atrial tachyarrhythmia in ambulatory dogs. Circulation. 2010;121:2615-23. doi:10.1161/CIRCULATIONAHA.109.919829.
26. Rysevaite K, Saburkina I, Pauziene N, et al. Immunohis-tochemical characterization of the intrinsic cardiac neural plexus in whole-mount mouse heart preparations. Heart Rhythm. 2011;8:731-8. doi:10.1016/j.hrthm.2011.01.013.
27. Yu HT, Kim TH, Uhm JS, et al. Prognosis of high sinus heartrate after catheter ablation for atrial fibrillation. Europace. 2017;19:1132-9. doi:10.1093/europace/euw142.
28. Arora R, Ulphani JS, Villuendas R, et al. Neural substrate foratrial fibrillation: implications for targeted parasympathetic blockade in the posterior left atrium. Am. J. Physiol. Heart Circ. Physiol. 2008;294(1):134-44. doi:10.1152/ajpheart.00732.2007.
29. Maupoil V, Bronquard C, Freslon JL, et al. Ectopic activity in the rat pulmonary vein can arise from simultaneous activation of alpha1- and beta1-adrenoceptors. Br. J. Pharmacol. 2007;150:899-905. doi:10.1038/sj.bjp.0707177.
30. Arsenault KA, Yusuf AM, Crystal E, et al. Interventionsfor preventing post-operative atrial fibrillation in patientsundergoing heart surgery. Cochrane Database Syst. Rev. 2013;31(1):CD003611. doi:10.1002/14651858.CD003611.pub3.
31. Cammarano C, Silva M, Comee M, et al. Meta-analysis of ivabradine in patients with stable coronaryartery disease with and without left ventricular dysfunction. Clin. Ther. 2016;38:387-95. doi:10.1016/j.clinthera.2015.12.018.
32. Scridon A, Dobreanu D. Inside molecular mechanisms and tar-gets of atrial fibrillation. In: Camm J, Bayes de Luna A, Dan GA (eds). Atrial fibrillation drug therapy update. London. Springer. 2014;23-54.
33. Levy MN. Autonomic interactions in cardiac control. Ann. N. YAcad. Sci. 1990; 601:209-21. doi:10.1111/j.1749-6632.1990.tb37302.x.
34. Sharifov OF, Fedorov VV, Beloshapko GG, et al. Roles of adrenergic andcholinergic stimulation in spontaneous atrial fibrillation indogs. J. Am. Coll. Cardiol. 2004;43:483-90. doi:10.1016/j.jacc.2003.09.030.
35. Task Forse of the European Society of Cardiology and the North American Society of Paciety of Pacing and Electrophysiology. Heart rate variability. Standarts of measurements, physiological interpretation and clinical use. Circulation. 1996;93:1043-65.