1. Tomasoni D., Adamo M., Anker M.S., von Haehling S., Coats A.J.S., Metra M. Heart failure in the last year: progress and perspective. ESC Heart Fail. 2020;7(6):3505-30. doi: 10.1002/ehf2.13124.
2. Fattouch K., Guccione F. The Role of Surgical Treatment of Severe Functional Mitral Regurgitation in Heart Failure.Cardiol Clin. 2021;39(2):185-188. doi: 10.1016/j.ccl.2021.01.012.
3. Hetzer R., Javier M.F.D.M., Wagner F., Loebe M., Javier Delmo E.M. Organ-saving surgical alternatives to treatment of heart failure. Cardiovasc Diagn Ther. 2021;11(1):213-225. doi: 10.21037/cdt-20-285.
4. Korpela H., Jarvelainen N., Siimes S., Lampela J., Airaksinen J., Valli K., Turunen M., Pajula J., Nurro J., Yla-Herttuala S. Gene therapy for ischaemic heart disease and heart failure. J Intern Med. 2021;290(3):567-582. doi: 10.1111/joim.13308.
5. Zachary I., Morgan R.D. Therapeutic angiogenesis for cardiovascular disease: biological context, challenges, prospects. Heart. 2011;97(3):181-9. doi: 10.1136/hrt.2009.180414.
6. Дергилев К.В., Василец Ю.Д., Цоколаева З.И., Зубкова Е.С., Парфенова Е.В. Перспективы клеточной терапии инфаркта миокарда и сердечной недостаточности на основе клеток кардиосфер. Терапевтический архив. 2020;92(4):111-120. doi: 10.26442/00403660.2020.04.000634.
7. Mancuso A., Barone A., Cristiano M.C., Cianflone E., Fresta M., Paolino D. Cardiac Stem Cell-Loaded Delivery Systems: A New Challenge for Myocardial Tissue Regeneration. Int J Mol Sci. 2020;21(20):7701. doi: 10.3390/ijms21207701.
8. Wang L., Serpooshan V., Zhang J. Engineering Human Cardiac Muscle Patch Constructs for Prevention of Post-infarction LV Remodeling. Front Cardiovasc Med. 2021;8:621781. doi: 10.3389/fcvm.2021.621781.eCollection 2021.
9. Wu X., Wu S., Kawashima H., Hara H., Ono M., Gao C., Wang R., Lunardi M., Sharif F., Wijns W., Serruys P. W., Onuma Y. Current perspectives on bioresorbable scaffolds in coronary intervention and other fields. Expert Rev Med Devices. 2021;18(4):351-365. doi: 10.1080/17434440.2021.1904894.
10. Dergilev K.V., Shevchenko E.K., Tsokolaeva Z.I., Beloglazova I.B., Zubkova E.S., Boldyreva M.A., Menshikov M.Y, Ratner E.I., Penkov D., Parfyonova YV. Cell Sheet Comprised of Mesenchymal Stromal Cells Overexpressing Stem Cell Factor Promotes Epicardium Activation and Heart Function Improvement in a Rat Model of Myocardium Infarction. Int J Mol Sci. 2020;21(24):9603. doi: 10.3390/ijms21249603.
11. Boldyreva M.A., Shevchenko E.K., Molokotina YD., Makarevich P.I., Beloglazova I.B., Zubkova E.S., Dergilev K.V., Tsokolaeva Z.I., Penkov D., Hsu M.N., Hu Y.C., Parfyonova Y.V. Transplantation of Adipose Stromal Cell Sheet Producing Hepatocyte Growth Factor Induces Pleiotropic Effect in Ischemic Skeletal Muscle. Int J Mol Sci. 2019;20(12):3088. doi: 10.3390/ijms20123088.
12. Dergilev K., Tsokolaeva Z., Makarevich P, Beloglazova I., Zubkova E., Boldyreva M. E., Ratner E., Dyikanov D., Menshikov M., Ovchinnikov A., Ageev F. Parfyonova Ye. C-Kit Cardiac Progenitor Cell Based Cell Sheet Improves Vascularization and Attenuates Cardiac Remodeling following Myocardial Infarction in Rats. Biomed Res Int. 2018;2018:3536854. doi: 10.1155/2018/3536854.
13. Ashur C., Frishman W.H.Cardiosphere-Derived Cells and Ischemic Heart Failure. Cardiol Rev. 2018;26(1):8-21. doi: 10.1097/CRD.0000000000000173.
14. Дергилев К.В., Василец Ю.Д., Цоколаева З.И., Парфенова Е.В. Трансформирующий фактор роста бета 1 (TGF-P1) регулирует сборку кардиальных сфероидов. Клеточные технологии в биологии и медицине. 2020;4:262-266. doi: 10.47056/1814-3490-2020-4-262-266.
15. Traktuev D.O., Tsokolaeva Z.I., Shevelev A.A., Talitskiy K.A., Stepanova V.V., Johnstone B.H., Rahmat-Zade T.M., Kapustin A.N., Tkachuk V.A., March K.L., Parfyonova Y.V. Urokinase gene transfer augments angiogenesis in ischemic skeletal and myocardial muscle. Mol Ther. 2007;15(11):1939-46. doi: 10.1038/sj.mt.6300262.
16. Grunewald M., Avraham I., Dor Y., Bachar-Lustig E., Itin A., Jung S., Chimenti S., Landsman L., Abramovitch R., Keshet E. VEGF-induced adult neovascularization: recruitment, retention, and role of accessory cells. Cell. 2006;124(1):175-89. doi: 10.1016/j.cell.2005.10.036.
17. Liu Z., Mikrani R., Zubair H.M., Taleb A., Naveed M., Baig M.M.F.A., Zhang Q., Li C., Habib M., Cui X., Sembatya K.R., Lei H., Zhou X. Systemic and local delivery of mesenchymal stem cells for heart renovation: Challenges and innovations. Eur J Pharmacol. 2020;876:173049. doi: 10.1016/j.ejphar.2020.173049.
18. Hematti P. Role of Extracellular Matrix in Cardiac Cellular Therapies. Adv Exp Med Biol. 2018;1098:173-188. doi: 10.1007/978-3-319-97421-7_9.
19. Behёn H., Evens L., Hendrikx M., Bito V, Bronckaers A. Combining stem cells in myocardial infarction: The road to superior repair? Med Res Rev. 2021 Jun 11. doi: 10.1002/med.21839. Online ahead of print.
20. Zhang M., Methot D., Poppa V., Fujio Y., Walsh K., Murry C.E. Cardiomyocyte grafting for cardiac repair: graft cell death and anti-death strategies. J Mol Cell Cardiol. 2001;33(5):907-21. doi: 10.1006/jmcc.2001.1367.
21. Zimna A., Kurpisz M. Hypoxia-Inducible Factor-1 in Physiological and Pathophysiological Angiogenesis: Applications and Therapies. Biomed Res Int. 2015;2015:549412. doi: 10.1155/2015/549412.
22. Kelly B.D., Hackett S.F., Hirota K., Oshima Y., Cai Z., Berg-Dixon S., Rowan A., Yan Z., Campochiaro PA., Semenza G.L. Cell type-specific regulation of angiogenic growth factor gene expression and induction of angiogenesis in nonischemic tissue by a constitutively active form of hypoxia-inducible factor 1. Circ Res. 2003;93(11):1074-81. doi: 10.1161/01.RES.0000102937.50486.1B.
23. Ceradini D.J., Kulkarni A.R., Callaghan M.J., Tepper O. M., Bastidas N., Kleinman M.E., Capla J.M., Galiano R.D., Levine J.P., Gurtner G.C. Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat Med. 2004;10(8):858-64. doi: 10.1038/nm1075.
24. Simon M.P, Tournaire R., Pouyssegur J. The angiopoietin-2 gene of endothelial cells is up-regulated in hypoxia by a HIF binding site located in its first intron and by the central factors GATA-2 and Ets-1. J Cell Physiol. 2008;217(3):809-18. doi: 10.1002/jcp.21558.
25. Takahashi T., Kalka C., Masuda H., Chen D., Silver M., Kearney M., Magner M., Isner J.M., Asahara T. Ischemia-and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization. Nat Med. 1999;5(4):434-8. doi: 10.1038/7434.
26. Kinnaird T., Stabile E., Burnett M.S., Epstein S. E. Bone-marrow-derived cells for enhancing collateral development: mechanisms, animal data, and initial clinical experiences. Circ Res. 2004;95(4):354-63. doi: 10.1161/01.RES.0000137878.26174.66.
27. Grant M.B., May W.S., Caballero S., Brown G.A., Guthrie S.M., Mames R.N., Byrne B.J., Vaught T., Spoerri P. E., Peck A.B., Scott E.W. Adult hematopoietic stem cells provide functional hemangioblast activity during retinal neovascularization. Nat Med. 2002;8(6):607-12. doi: 10.1038/nm0602-607.
28. Rehman J., Li J., Orschell C.M., March K.L. Peripheral blood "endothelial progenitor cells" are derived from monocyte/ macrophages and secrete angiogenic growth factors. Circulation. 2003;107(8):1164-9. doi: 10.1161/01.cir.0000058702.69484.a0.
29. Ibrahim A.G., Cheng K., Marban E. Exosomes as critical agents of cardiac regeneration triggered by cell therapy. Stem Cell Reports. 2014;2(5):606-19. doi: 10.1016/j.stemcr.2014.04.006.
30. Hirai K., Ousaka D., Fukushima Y., Kondo M., Eitoku T. , Shigemitsu Y., Hara M., Baba K., Iwasaki T., Kasahara S., Ohtsuki S., Oh H. Cardiosphere-derived exosomal microRNAs for myocardial repair in pediatric dilated cardiomyopathy. Sci Transl Med. 2020 Dec 9;12(573):eabb3336. doi: 10.1126/scitranslmed.abb3336.
31. Bittle G.J., Morales D., Pietris N., Parchment N., Parsell D., Peck K., Deatrick K.B., Rodriguez-Borlado L., Smith R.R., Marban L., Kaushal S. Exosomes isolated from human cardiosphere-derived cells attenuate pressure overload-induced right ventricular dysfunction. J Thorac Cardiovasc Surg. 2021: 162(3):975-986.e6. doi: 10.1016/j.jtcvs.2020.06.154.
32. Malliaras K., Li T.S., Luthringer D., Terrovitis J., Cheng K., Chakravarty T., Galang G., Zhang Y, Schoenhoff F., Van Eyk J., Marban L., Marban E. Safety and efficacy of allogeneic cell therapy in infarcted rats transplanted with mismatched cardiosphere-derived cells. Circulation. 2012;125(1):100-12. doi: 10.1161/CIRCULATIONAHA.111.042598.
33. Chakravarty T., Henry T.D., Kittleson M., Lima J., Siegel R.J., Slipczuk L., Pogoda J.M., Smith R.R., Malliaras K., Marban L., Ascheim D.D., Marban E., Makkar R.R. Allogeneic cardiosphere-derived cells for the treatment of heart failure with reduced ejection fraction: the Dilated cardiomYopathy iNtervention with Allogeneic MyocardIally-regenerative Cells (DYNAMIC) trial. EuroIntervention. 2020;16(4):e293-e300. doi: 10.4244/EIJ-D-19-00035.