1. Tara S., Rocco K.A., Hibino N., Sugiura T., Kurobe H., Breuer C.K. et al. Vessel bioengineering. Circ J. 2014; 78(1): 12–9.
2. Antonova L.V., Seifalian A.M., Kutikhin A.G., Sevostyanova V.V., Matveeva V.G., Velikanova E.A. et al. Conjugation with RGD peptides and incorporation of vascular endothelial growth factor are equally efficient for biofunctionalization of tissue-engineered vascular grafts./ International Journal of Molecular Sciences 2016; 17(11): 1920. doi:10.3390/ijms17111920.
3. Sevostyanova V.V., Matveeva V.G., Antonova L.V., Velikanova E.A., Shabaev A.R., Senokosova E.A. et al. Constructing a Blood Vessel on the Porous Scaffold Modified with Vascular Endothelial Growth Factor and Basic Fibroblast Growth Factor. AIP Conference Proceedings. 2016; 1783(1): 020204. doi: 10.1063/1.4966498.
4. Antonova L.V., Krivkina E.O., Sevostyanova V.V., Velikanova E.A., Matveeva V.G., Mironov A.V. et al. Efficiency of using bioactive molecules in creation of functional biodegradated vascular grafts of small diameter. Siberian Medical Review. 2017;(6): 85-93. DOI: 10.20333/2500136-2017-6-85-9 (in Russian).
5. Glushkova T.V., Sevostyanova V.V., Antonova L.V., Klyshnikov K.Y., Ovcharenko E.A., Sergeeva E.A. et al. Biomechanical remodeling of biodegradable small-diameter vascular grafts in situ. Russian Journal of Transplantology and Artificial Organs. 2016; 18(2):99-109. (in Russian).
6. Nasonova M.V., Shishkova D.K., Antonova L.V., Sevostyanova V.V., Kudryavtseva Y.A., Barbarash O.L. et al. Subcutaneous Implantation of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and Poly(ε-caprolactone) Scaffolds Modified with Growth Factors. Sovremennye tehnologii v medicine. 2017; 9(2): С 7-18. (in Russian)
7. Matveeva V.G., Antonova L.V., Sevost’janova V.V., Velikanova E.A., Krivkina E.O., Glushkova T.V. et al. Modification by RGD-peptides оf vascular grafts of small diameter from polyparolactone: experimental study results. Kompleksnye problemy serdechno-sosudistyh zabolevanij. 2017. (3): 13-24 (in Russian).
8. Ren X., Feng Y., Guo J., Wang H., Li Q., Yang J. et al. Surface modification and endothelialization of biomaterials as potential scaffolds for vascular tissue engineering applications. Chem Soc Rev. 2015; 44(15): 5680-742.
9. Kurobe H., Maxfield M.W., Tara S., Rocco K.A., Bagi P.S., Yi T. et al. Development of small diameter nanofiber tissue engineered arterial grafts. PLoS One. 2015; 10(4): e0120328.
10. Chong D.S., Lindsey B., Dalby M.J., Gadegaard N., Seifalian A.M., Hamilton G. Luminal surface engineering, ‘micro and nanopatterning’: potential for self endothelialising vascular grafts? Eur J Vasc Endovasc Surg. 2014; 47(5): 566-76.
11. d’Arcy J.L., Prendergast B.D., Chambers J.B., Ray S.G., Bridgewater B. et al. Valvular heart disease: the next cardiac epidemic. Heart 2011; 97(2): 91-93. doi: 10.1136/ hrt.2010.205096.
12. Farzaneh-Far A., Proudfoot D., Shanahan C. Weissberg P.L. Vascular and valvar calcification: recent advances. Heart 2001; 85: 13–17. doi: 10.1136/heart.85.1.13.
13. Schoen F.J., Levy R.J. Calcification of Tissue Heart Valve Substitutes: Progress Toward Understanding and Prevention. Ann Thorac Surg 2005; 79: 1072–80. doi: 10.1016/j. athoracsur.2004.06.033.
14. New S.E., Aikawa E. Role of extracellular vesicles in de novo mineralization: an additional novel mechanism of cardiovascular calcification. Arterioscler Thromb Vasc Biol 2013; 33(8): 1753–8. doi.org/10.1161/CIRCRESAHA.110.234146.
15. Goettsch C., Hutcheson J.D., Aikawa E. MicroRNA in cardiovascularcalcification: focus on targets and extracellular vesicle deliverymechanisms. Circ Res 2013; 112(7): 1073–84.
16. Leopold J.A. Vascular calcification: mechanisms of vascular smooth musclecell calcification. Trends Cardiovasc Med. 2015; 25(4): 267-74. doi: 10.1016/j.tcm.2014.10.021.
17. Bujan J., Bellh J.M., Sabater C., Jurado F., Garcia-Honduvilla N., Dominguez B. et al. Modifications induced by atherogenic diet in the capacity of the arterial wall in rats to respond to surgical insult. Atherosclerosis1996; 122(2): 141–52.
18. Bostrom K.I., Rajamannan N.M., Towler D.A. The regulation of valvular andvascular sclerosis by osteogenic morphogens. Circ Res 2011; 109(5): 564–577. doi.org/10.1161/ CIRCRESAHA.110.234278.
19. Tintut Y., Patel J., Parhami F., Demer L.L. Tumor necrosis factor-alpha promotes in vitro calcification ofvascular cells via the cAMP pathway. Circulation 2000; 102(21): 2636–42. doi.org/10.1161/01.CIR.102.21.2636.
20. Cote N., Mahmut A., Bosse Y., Couture C., Pagé S., Trahan S. et al. Inflammation is associated with the remodeling of calcificaortic valve disease. Inflammation 2013; 36(3): 573– 581. doi.org/10.1007/s10753-012-9579-6.
21. Fadini G.P., Rattazzi M., Matsumoto T., Asahara T., Khosla S. Emerging role of circulating calcifying cells in thebone-vascular axis. Circulation 2012; 125(22): 2772–81.doi. org/10.1161/CIRCULATIONAHA.112.090860.
22. Gossl M., Khosla S., Zhang X., Higano N., Jordan K.L., Loeffler D. et al. A. Role of circulating osteogenic progenitor cells in calcific aorticstenosis. J. Am Coll Cardiol 2012; 60(19): 1945–1953. doi.org/10.1016/j.jacc.2012.07.042.
23. Cottignoli V., Cavarretta E., Salvador L., Valfré C., Maras A. Morphological and Chemical Study of Pathological Deposits in Human Aortic and Mitral Valve Stenosis: A Biomineralogical Contribution. Patholog Res Int. 2015; 2015: 342984. doi: 10.1155/2015/342984.
24. Pettenazzo E., Deiwick M., Thiene G., Molin G., Glasmacher B., Martignago F. et al. Dynamic in vitro calcification of bioprosthetic porcine valves evidence of apatite crystallization. The Journal of Thoracic and Cardiovascular Surgery 2001; 121(3): 500-509. doi: 10.1067/mtc.2001.112464.
25. Kudrjavceva Ju.A., Nasonova M.V., Akent’eva T.N., Burago A.Ju., Zhuravleva I.Ju. The role of suture material in the calcification of cardiovascular bioprosthesis. Kompleksnye problemy serdechno-sosudistyh zabolevanij. 2013; 4: 22-27 (in Russian).