1. Vaz FM, Wanders RJ. Carnitine biosynthesis in mammals. Biochem J. 2002;361(Pt 3):417–429.
2. Paik WK, Kim S, Lim IK. Protein methylation and interaction with the antiproliferative gene, BTG2/TIS21/Pc3. Yonsei Med J. 2014;55(2):292–303. doi: 10.3349/ymj.2014.55.2.292.
3. Servillo L, Giovane A, Cautela D, Castaldo D, Balestrieri ML. Where does Ne-trimethyllysine for the carnitine biosynthesis in mammals come from? PLoS ONE. 2014;9(1):e84589. doi:10.1371/journal.pone.0084589.
4. Wilson Tang WH, Tong W, Shrestha K, Wang Z, Levison BS, Delfraino B et al. Differential effects of arginine methylation on diastolic dysfunction and disease progression in patients with chronic systolic heart failure. Eur Heart J. 2008;29(20):2506–2513. doi: 10.1093/eurheartj/ehn360.
5. Жлоба А. А. Роль АДМА в качестве эндогенного ингибитора eNOS и одного из медиаторов развития вазомоторной эндотелиальной дисфункции. Регионарное кровообращение и микроциркуляция. 2007;6(3):4–14..
6. Baumgartner H, Hung J, Bermejo J, Chambers JB, Evangelista A, Griffin BP et al. Echocardiographic assessment of valve stenosis: EAE/ASE recommendations for clinical practice. Eur J Echocardiogr. 2009;10(1):1–25. doi: 10.1093/ejechocard/jen303.
7. Teerlink T, Nijveldt RJ, de Jong, S, van Leeuwen PA. Determination of arginine, asymmetric dimethylarginine, and symmetric dimethylarginine in human plasma and other biological samples by high-performance liquid chromatography. Anal Biochem. 2002;303(2):131–137.
8. Schwedhelm E. Quantification of ADMA: analytical approaches. Vasc Med. 2005;10(Suppl. 1): S89–95.
9. Гилинский М. А., Айзман Р. И., Корощенко Г. А., Латышева Т. В., Новоселова Т. И., Петракова Г. М. и др. Метиларгинины у крыс в глицериновой модели острой почечной недостаточности. Бюллетень СО РАМН. 2010;30 (4):82–86..
10. Zhloba AA, Subbotina TF, Lupan DS, Bogova VA, Kusheleva OA. Arginine and lysine as products of basic carboxypeptidase activity associated with fibrinolysis. Biochemistry (Moscow) Supplement Series B: Biomedical Chemistry. 2012;6 (3):261–265. doi: 10.1134/S1990750812030158.
11. Zhloba AA, Subbotina TF, Alekseevskaya ES, Moiseeva OM, Gavrilyuk ND, Irtyuga OB. The level of circulating PGC1α in cardiovascular diseases. Biochemistry (Moscow) Supplement Series B: Biomedical Chemistry. 2015;9(2):143–150. doi: 10.1134/S1990750815020158.
12. Zhloba AA, Blashko EL. Liquid chromatographic determination of total homocysteine in blood plasma with photometric detection. J Chromatography B. 2004;800(1–2):275–280.
13. Жлоба А. А. Лабораторная диагностика при гипергомоцистеинемии. Клинико-лабораторный консилиум. 2009;(1):49– 60..
14. Zhloba AA, Subbotina TF. Homocysteinylation score of high-molecular weight plasma proteins. Amino Acids. 2014;46 (4):893–899. doi: 10.1007/s00726–013–1652–4.
15. Midttun Ø, Kvalheim G, Ueland PM. High-throughput, low-volume, multianalyte quantification of plasma metabolites related to one-carbon metabolism using HPLC–MS/MS. Anal Bioanal Chem. 2013;405(6):2009–2017. doi: 10.1007/s00216– 012–6602–6.
16. Yu E, Mercer J, Bennett M. Mitochondria in vascular disease. Cardiovasc Res. 2012;95(2):173–182. doi: 10.1093/cvr/cvs111.
17. Phypers B, Pierce JMТ. Lactate physiology in health and disease. Contin. Educ. Anaesth. Crit. Care. Pain. 2006;6(3):128– 132. doi: 10.1093/bjaceaccp/mkl018.
18. Жлоба А. A., Маевская Е. Г. Дисфункция анаплеротического пути энергетического метаболизма от аминокислот к сукцинату у лиц старшей возрастной группы. Артериальная гипертензия. 2011;17(1):74–78..
19. Lee J, Saha PK, Yang QH, Lee S, Park JY, Suh Y et al. Targeted inactivation of MLL3 histone H3‑Lys‑4 methyltransferase activity in the mouse reveals vital roles for MLL3 in adipogenesis. Proc. Natl. Acad. Sci. USA. 2008;105(4):19229–19234. doi: 10.1073/pnas.0810100105.
20. Obianyo O, Thompson PR. Kinetic mechanism of protein arginine methyltransferase 6 (PRMT6). J. Biol. Chem. 2012;287 (8):6062–6071. doi: 10.1074/jbc.M111.333609.