1. Poller W, Dimmeler S, Heymans S, et al. Non-coding RNAs in cardiovascular diseases: diagnostic and therapeutic perspectives. Eur Heart J. 2018;39(29):2704-16. doi:10.1093/eurheartj/ehx165.
2. Yin H, Akawi O, Fox SA, et al. Cardiac-referenced leukocyte telomere length and outcomes after cardiovascular surgery. JACC Basic Transl Sci. 2018;3(5):591-600. doi:10.1016/j.jacbts. 2018.07.004.
3. Blackburn EH, Epel ES, Lin J. Human telomere biology: A contributory and interactive factor in aging, disease risks, and protection. Science. 2015;350(6265):1193-8. doi:10.1126/science. aab3389.
4. D’Mello MJJ, Ross SA, Briel M, et al. Association between shortened leukocyte telomere length and cardiometabolic outcomes: systematic rewire and meta-analysis. Circ Cardiovasc Genet. 2015;8(1):82-90. doi:10.1161/CIRCGENETICS.113.000485.
5. Ludlow AT, Roth SM. Physical activity and telomere biology: exploring the link with aging-related disease prevention. J Aging Res. 2011;2011:790378. doi:10.4061/2011/790378.
6. Ehrlenbach S, Willeit P, Kiechl S, et al. Influences on the reduction of relative telomere length over 10 years in the population-based Bruneck Study: introduction of a well-controlled high-throughput assay. Int J Epidemiol. 2009;38(6):1725-34. doi:10/1093/ije/dyp273.
7. Daniali L, Benetos A, Susser E, et al. Telomeres shorten at equivalent rates in somatic tissues of adults. Nat Commun. 2013;4:1597. doi:10/1038/ncomms2602.
8. Ludlow AT, Gratidao L, Ludlow LW, et al. Acute exercise activates p38 MAPK and increases the expression of telomere-protective genes in cardiac muscle. Exp Physiol. 2017;102(4):397-410. doi:10.1113/EP086189.
9. Song Z, von Figura G, Liu Y, et al. Lifestyle impacts on the agingassociated expression of biomarkers of DNA damage and telomere dysfunction in human blood. Aging Cell. 2010;9(4):60715. doi:10.1111/j.1474-9726.2010.00583.x.
10. Yeh J-K, Lin M-H, Wang C-Y. Telomeres as Therapeutic Targets in Heart Disease. JACC Basic Transl Sci. 2019;4(7):855-65. doi:10.1016/j.jacbts.2019.05.009.
11. Dankel SJ, Loenneke JP, Loprinzi PD. The impact of overweight/ obesity duration and physical activity on telomere length: An apptication of the WATCU paradigm. Obes Res Clin Pract. 2017;11(2):247-52. doi:10.1016/j.orep.2016.11.002.
12. Mason AE, Hecht FM, Daubenmier JJ, et al. Weight Loss Maintenance and Cellular Aging in the Supporting Health Through Nutrition and Exercise Study. Psychosom Med. 2018;80(7):60919. doi:10.1097/PSY.0000000000000616.
13. Nordfjall K, Svenson U, Norrback K-F, et al. The individual blood cell telomere attrition rate is telomere length dependent. PLoS Genet. 2009;5(2):e1000375. doi:10.1371/journal.pgen.1000375.
14. Marques A, Gouveira ER, Peralta M, et al. Cardiorespiratory fitness and telomere length: a systematic review. J Sports Sci. 2020;38(14):1690-7. doi:10.1080/02640414.2020.1754739.
15. Botha M, Grece L, Bugarith K, et al. The impact of voluntary execise on relative telomere length in a rat model of developmental stress. BMC Res Notes. 2012;27(5):697. doi:10.1186/1756-0500-5-697.
16. Grafe K, Bendick P, Burr M, et al. Effects of resistance training on vascular and hemodynamic responses in patients with coronary artery disease. Res Q Exerc Sport. 2018;89(4):457-64.
17. Kwon HR, Han KA, Ku YH, et al. The effects of resistance training on muscle and body fat mass and muscle strength in type 2 diabetic women. Korean Diabetes J. 2010;34(2):101-10. doi:10.4093/kdj.2010.34.2.101.
18. Saβenroth D, Meyer A, Salewsky B, et al. Sports and Exercise at Different Ages and Leukocyte Telomere Length in Later Life — Data from the Berlin Aging Study II (BASE-II). PLoS One. 2015;10(12):e0142131. doi:10.1371/journal.pone.0142131.
19. Arsenis NC, You T, Ogawa EF, et al. Physical activity and telomere length: Impact of aging and potential mechanisms of action. Oncotarget. 2017;8(27):45008-19. doi:10.18632/oncotarget.16726.
20. Kadi F, Ponsot E, Piehl-Aulin K, et al. The effects of regular strength training on telomere length in human skeletal muscle. Med Sci Sports Exerc. 2008;40(1):82-7. doi:10.1249/mss.0b013e3181596695.
21. Laughlin GA, Cummins KM, Wassel CL, et al. The association of fetuin-A with cardiovascular disease mortality in older community-dwelling adults: the Rancho Bernardo study. J Am Coll Cardiol. 2012;59(19):1688-96. doi:10.1016/j.jacc.2012.01.038.
22. Wang H, Sama AE. Anti-inflammatory role of fetuin-A in injury and infection. Curr Mol Med. 2012;12(5);625-33. doi:10.2174/156652412800620039.
23. Milte CM, Russel AP, Ball K, et al. Diet quality and telomere length in older Australian men and women. Eur J Nutr. 2018;57(1):36372. doi:10/1007/s00394-016-1326-6.
24. García-Calzón S, Zalba G, Ruiz-Canela M, et al. Dietary inflammatory index and telomere length in subjects with a high cardiovascular disease risk from the PREDIMED-NAVARRA study: cross-sectional and longitudinal analyses over 5 y. Am J Clin Nutr. 2015;102(4):897-904. doi:10.3945/ajcn.115.116863.
25. Tucker LA. Dietary Fiber and Telomere Length in 5674 U. S. Adults: An NHANES Study of Biological Aging. Nutrients. 2018;10(4):400. doi:10.3390/nu10040400.
26. Lynch SM, Peek MK, Mitra N, et al. Race, Ethnicity, Psychosocial Factors, and Telomere Length in a Multicenter Setting. PLoS One. 2016;11(1):e0146723. doi:10.1371/journal.pone.0146723.
27. Starnino L, Dupuis G, Busque L, et al. The associations of hostility and defensiveness with telomere length are influenced by sex and health status. Biol Sex Differ. 2021;12(1):2. doi:10.1186/s13293020-00349-w.