1. World Health Organization. World health statistics 2016: Monitoring health for the SDGs. 136 с. ISBN 978-92-4-069569-6
2. Selye H. Stress without distress. -Philadelphia: Lippincott; 171 с. ISBN 978-0-397-01026-4
3. William Tank A, Lee Wong D. Peripheral and Central Effects of Circulating Catecholamines. In: Comprehensive Physiology. -Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. - pp. 1-15. ISBN: 978-0-470-65071-4.
4. Bers DM. Calcium Cycling and Signaling in Cardiac Myocytes. Annual Review of Physiology. 2008;70(1):23–49. DOI: 10.1146/annurev.physiol.70.113006.100455
5. Gustafsson AB, Gottlieb RA. Heart mitochondria: gates of life and death. Cardiovascular Research. 2007;77(2):334–43. DOI: 10.1093/cvr/cvm005
6. Brini M, Ottolini D, Calì T, Carafoli E. Calcium in Health and Disease. In: Interrelations between Essential Metal Ions and Human Diseases. -Dordrecht: Springer Netherlands, 2013. - pp.81-137. ISBN: 978-94-007-7499-5, 978-94-007-7500-8.
7. Foucart S, Nadeau R, de Champlain J. The release of catecholamines from the adrenal medulla and its modulation by alpha 2-adrenoceptors in the anaesthetized dog. Canadian Journal of Physiology and Pharmacology. 1987;65(4):550–7. PMID: 3038285
8. Gadkari TV, Cortes N, Madrasi K, Tsoukias NM, Joshi MS. Agmatine induced NO dependent rat mesenteric artery relaxation and its impairment in salt-sensitive hypertension. Nitric Oxide. 2013;35:65–71. DOI: 10.1016/j.niox.2013.08.005
9. Brede M, Wiesmann F, Jahns R, Hadamek K, Arnolt C, Neubauer S et al. Feedback inhibition of catecholamine release by two different alpha2-adrenoceptor subtypes prevents progression of heart failure. Circulation. 2002;106(19):2491–6. PMID: 12417548
10. MacMillan LB, Hein L, Smith MS, Piascik MT, Limbird LE. Central hypotensive effects of the alpha2A-adrenergic receptor subtype. Science (New York, N.Y.). 1996;273(5276):801–3. PMID: 8670421
11. Link RE, Desai K, Hein L, Stevens ME, Chruscinski A, Bernstein D et al. Cardiovascular regulation in mice lacking alpha2-adrenergic receptor subtypes b and c. Science (New York, N. Y.). 1996;273(5276):803–5. PMID: 8670422
12. Makaritsis KP, Handy DE, Johns C, Kobilka B, Gavras I, Gavras H. Role of the alpha2B-adrenergic receptor in the development of salt-induced hypertension. Hypertension (Dallas, Tex.: 1979). 1999;33(1):14–7. PMID: 9931075
13. Hein L, Altman JD, Kobilka BK. Two functionally distinct α2-adrenergic receptors regulate sympathetic neurotransmission. Nature. 1999;402(6758):181–4. DOI: 10.1038/46040
14. Zefirov TL, Khisamieva LI, Ziyatdinova NI, Zefirov AL. Peculiar Effects of Selective Blockade of α2-Adrenoceptor Subtypes on Cardiac Chronotropy in Newborn Rats. Bulletin of Experimental Biology and Medicine. 2015;160(1):6–8. DOI: 10.1007/s10517-015-3084-5
15. Bousquet P, Feldman J, Atlas D. An endogenous, non-catecholamine clonidine antagonist increases mean arterial blood pressure. European Journal of Pharmacology. 1986;124(1–2):167–70. PMID: 3720837
16. Maltsev AV, Kokoz YM, Evdokimovskii EV, Pimenov OY, Reyes S, Alekseev AE. Alpha-2 adrenoceptors and imidazoline receptors in cardiomyocytes mediate counterbalancing effect of agmatine on NO synthesis and intracellular calcium handling. Journal of Molecular and Cellular Cardiology. 2014;68:66–74. DOI: 10.1016/j.yjmcc.2013.12.030
17. Мальцев А.В., Ненов М.Н., Пименов О.Ю., Кокоз Ю.М. Модуляция агматином Ca2+-токов L-типа и внутриклеточной концентрации ионов Ca2+ в кардиомиоцитах крыс. Биологические мембраны: Журнал мембранной и клеточной биологии. 2013;30(2):92–104. DOI: 10.7868/S0233475513020059
18. Kokoz YM, Evdokimovskii EV, Maltsev AV, Nenov MN, Nakipova OV, Averin AS et al. Sarcolemmal α2-adrenoceptors control protective cardiomyocyte-delimited sympathoadrenal response. Journal of Molecular and Cellular Cardiology. 2016;100:9–20. DOI: 10.1016/j.yjmcc.2016.09.006
19. Alekseev AE, Korystova AF, Mavlyutova DA, Kokoz YM. Potential-dependent Ca2+ currents in isolated heart cells of hibernators. Biochemistry and Molecular Biology International. 1994;33(2):365–75. PMID: 7951054
20. Nagano T, Yoshimura T. Bioimaging of nitric oxide. Chemical Reviews. 2002;102(4):1235–70. PMID: 11942795
21. Edwards L, Fishman D, Horowitz P, Bourbon N, Kester M, Ernsberger P. The I1-imidazoline receptor in PC12 pheochromocytoma cells activates protein kinases C, extracellular signal-regulated kinase (ERK) and c-jun N-terminal kinase ( JNK). Journal of Neurochemistry. 2001;79(5):931–40. PMID: 11739604
22. Ненов М.Н., Березин А.В., Федотова Е.И., Гришин К.С., Пименов О.Ю., Мурашов А.Н. и др. “Arginine paradox” in cardyomyocites of Sprague-Dawley and Spontaneously Hypertensive Rats: α2-adrenoreceptor-mediated regulation of L-type Ca2+ currents by L-arginine. Биологические Мембраны: Журнал мембранной и клеточной биологии. 2010;27(5):440–8.
23. Blaustein MP, Lederer WJ. Sodium/Calcium Exchange: Its Physiological Implications. Physiological Reviews. 1999;79(3):763–854. DOI: 10.1152/physrev.1999.79.3.763
24. Sipido KR, Maes M, Van de Werf F. Low efficiency of Ca2+ entry through the Na(+)-Ca2+ exchanger as trigger for Ca2+ release from the sarcoplasmic reticulum. A comparison between L-type Ca2+ current and reverse-mode Na(+)-Ca2+ exchange. Circulation Research. 1997;81(6):1034–44. PMID: 9400385
25. Michell BJ, Chen Z, Tiganis T, Stapleton D, Katsis F, Power DA et al. Coordinated Control of Endothelial Nitric-oxide Synthase Phosphorylation by Protein Kinase C and the cAMPdependent Protein Kinase. Journal of Biological Chemistry. 2001;276(21):17625–8. DOI: 10.1074/jbc.C100122200
26. Schümann HJ, Endoh S, Brodde OE. The time course of the effects of beta- and alpha-adrenoceptor stimulation by isoprenaline and methoxamine on the contractile force and cAMP level of the isolated rabbit papillary muscle. Naunyn-Schmiedeberg’s Archives of Pharmacology. 1975;289(3):291–302. PMID: 169486
27. Terzic A, Pucéat M, Clément O, Scamps F, Vassort G. Alpha1-adrenergic effects on intracellular pH and calcium and on myofilaments in single rat cardiac cells. The Journal of Physiology. 1992;447:275–92. PMID: 1317431
28. Ranek MJ, Kost CK, Hu C, Martin DS, Wang X. Muscarinic2 receptors modulate cardiac proteasome function in a protein kinase G-dependent manner. Journal of Molecular and Cellular Cardiology. 2014;69:43–51. DOI: 10.1016/j.yjmcc.2014.01.017
29. Lee N, Jeong S, Kim K-C, Kim J-A, Park J-Y, Kang H-W et al. Ca2+ Regulation of Cav 3.3 T-type Ca2+ Channel Is Mediated by Calmodulin. Molecular Pharmacology. 2017;92(3):347–57. DOI: 10.1124/mol.117.108530
30. Cohn JN, Pfeffer MA, Rouleau J, Sharpe N, Swedberg K, Straub M et al. Adverse mortality effect of central sympathetic inhibition with sustained-release moxonidine in patients with heart failure (MOXCON). European Journal of Heart Failure. 2003;5(5):659–67. PMID: 14607206
31. Kang M, Chung KY. PKC-ε mediates multiple endothelin-1 actions on systolic Ca2+ and contractility in ventricular myocytes. Biochemical and Biophysical Research Communications. 2012;423(3):600–5. DOI: 10.1016/j.bbrc.2012.06.024