Статья
Метаболический синдром и сердечная недостаточность
В последние годы взаимосвязь метаболического синдрома и ожирения с развитием сердечной недостаточности стала предметом пристального внимания. В данной статье рассматриваются патофизиологические механизмы, взаимодействие которых определяет различные траектории развития метаболического синдрома и последующее формирование отдельных фенотипов сердечной недостаточности. Приводятся сведения об особенностях клинического течения при сочетании ожирения и сердечной недостаточности, трудностях, с которыми можно столкнуться при диагностике сердечной недостаточности и путей их преодоления, а также данные о возможностях болезнь-модифицирующей терапии, в т.ч. роли ингибиторов натрий-глюкозного котранспортера 2 типа и агонистов рецепторов глюкагоноподобного пептида-1.
1. Галявич А. С., Терещенко С. Н., Ускач Т. М. и др. Хроническая сердечная недостаточность. Клинические рекомендации 2024. Российский кардиологический журнал. 2024;29(11):6162. doi:10.15829/1560-4071-2024-6162. EDN: WKIDLJ.
2. Perrone-Filardi P, Savarese G, Scarano M, et al. Prognostic impact of metabolic syndrome in patients with chronic heart failure: data from GISSI-HF trial. Int J Cardiol. 2015;178:85-90. doi:10.1016/j.ijcard.2014.10.094.
3. Butler J, Rodondi N, Zhu Y, et al. Metabolic syndrome and the risk of cardiovascular disease in older adults. J. Am. Coll. Cardiol. 2006;47:1595-602.
4. Wang J, Sarnola K, Ruotsalainen S, et al. The metabolic syndrome predicts incident congestive heart failure: A 20-year follow-up study of elderly Finns. Atherosclerosis. 2010;210:237-42.
5. Ho JE, Gona P, Pencina MJ, et al. Discriminating clinical features of heart failure with preserved vs. reduced ejection fraction in the community. Eur. Heart J. 2012;33:1734-41.
6. Kim TE, Kim H, Sung J, et al. The association between metabolic syndrome and heart failure in middle-aged men and women: Population-based study of 2 million individuals. Epidemiol. Health. 2022;44:e2022078.
7. Kim TE, Kim DY, Kim H, et al. The Impact of Metabolic Syndrome on Heart Failure in Young Korean Population: A Nationwide Study. Metabolites. 2024;14:485.
8. Kenchaiah S, Evans JC, Levy D, et al. Obesity and the risk of heart failure. N Engl J Med. 2002;347:305-13.
9. Rosengren A, Åberg M, Robertson J, et al. Body weight in adolescence and long-term risk of early heart failure in adulthood among men in Sweden. Eur Heart J. 2017;38:1926-33.
10. Burger PM, Koudstaal S, Dorresteijn JAN, et al.; UCC-SMART study group. Metabolic syndrome and risk of incident heart failure in non-diabetic patients with established cardiovascular disease. Int J Cardiol. 2023;379:66-75.
11. Liu L, Lima JAC, Post WS, Szklo M. Associations of time-varying obesity and metabolic syndrome with risk of incident heart failure and its subtypes: Findings from the Multi-Ethnic Study of Atherosclerosis. Int J Cardiol. 2021;338:127-35.
12. Bae JP, Kallenbach L, Nelson DR, et al. Obesity and metabolic syndrome in patients with heart failure with preserved ejection fraction: a cross-sectional analysis of the Veradigm Cardiology Registry. BMC Endocr Disord. 2024;24(1):59.
13. Zhou Y, Xie Y, Dong J, He K. Associations between metabolic overweight/obesity phenotypes and mortality risk among patients with chronic heart failure. Front Endocrinol (Lausanne). 2024;15:1445395.
14. Horwich TB, Fonarow GC, Hamilton MA, et al. The relationship between obesity and mortality in patients with heart failure. J Am Coll Cardiol. 2001;38:789-95.
15. Padwal R, McAlister FA, McMurray JJ, et al.; Meta-analysis Global Group in Chronic Heart Failure (MAGGIC). The obesity paradox in heart failure patients with preserved versus reduced ejection fraction: A meta-analysis of individual patient data. Int J Obes (Lond). 2014;38:1110-4.
16. Tsujimoto T, Kajio H. Abdominal obesity is associated with an increased risk of all-cause mortality in patients with HFpEF. J Am Coll Cardiol. 2017;70:2739-49.
17. Streng KW, Voors AA, Hillege HL, et al. Waist-to-hip ratio and mortality in heart failure. Eur J Heart Fail. 2018;20:1269-77.
18. Butt JH, Petrie MC, Jhund PS, et al. Anthropometric measures and adverse outcomes in heart failure with reduced ejection fraction: Revisiting the obesity paradox. Eur Heart J. 2023;44:1136-53.
19. Zhu XM, Xu Y, Zhang J. Cardiometabolic Index is associated with heart failure: a cross-sectional study based on NHANES. Front Med (Lausanne). 2024;11:1507100.
20. Wu M, Lai W, Huo X, et al. Association of visceral adiposity index (VAI) with prognosis in patients with metabolic syndrome and heart failure with reduced ejection fraction. BMC Cardiovasc Disord. 2025;25(1):160.
21. Kostis JB, Sanders M. The association of heart failure with insulin resistance and the development of type 2 diabetes. Am. J. Hypertens. 2005;18:731-7.
22. Aimo A, Castiglione V, Borrelli C, et al. Oxidative stress and inflammation in the evolution of heart failure: From pathophysiology to therapeutic strategies. Eur. J. Prev. Cardiol. 2020;27:494-510.
23. Purwowiyoto SL, Prawara AS. Metabolic syndrome and heart failure: Mechanism and management. Med. Pharm. Rep. 2021;94:15-21.
24. Matsuzawa Y, Funahashi T, Nakamura T. The concept of metabolic syndrome: Contribution of visceral fat accumulation and its molecular mechanism. J. Atheroscler. Thromb. 2011;18:629-39.
25. Pekgor S, Duran C, Berberoglu U, Eryilmaz MA. The Role of Visceral Adiposity Index Levels in Predicting the Presence of Metabolic Syndrome and Insulin Resistance in Overweight and Obese Patients. Metab. Syndr. Relat. Disord. 2019;17:296-302.
26. Alebna PL, Mehta A, Yehya A, et al. Update on obesity, the obesity paradox, and obesity management in heart failure. Progress in Cardiovascular Diseases. 2024;82:34-42.
27. Verbrugge FH, Omote K, Reddy YNV, et al. Heart failure with preserved ejection fraction in patients with normal natriuretic peptide levels is associated with increased morbidity and mortality. Eur Heart J. 2022;43:1941-51.
28. Clerico A, Giannoni A, Vittorini S, Emdin M. The paradox of low BNP levels in obesity. Heart Fail Rev. 2012;17:81-96.
29. Gargiulo P, Marsico F, Renga F, et al. The metabolic syndrome in heart failure: Insights to specific mechanisms. Heart Fail. Rev. 2020;25:1-7.
30. Putnam K, Shoemaker, R, Yiannikouris F, Cassis LA. The renin-angiotensin system: A target of and contributor to dyslipidemias, altered glucose homeostasis, and hypertension of the metabolic syndrome. Am. J. Physiol. Heart Circ. Physiol. 2012;302:H1219-H1230.
31. Lin L, Liu X, Xu J, et al. High-density lipoprotein inhibits mechanical stress-induced cardiomyocyte autophagy and cardiac hypertrophy through angiotensin II type 1 receptor-mediated PI3K/Akt pathway. J. Cell Mol. Med. 2015;19:1929-38.
32. Pan J, Fukuda K, Saito M, et al. Mechanical stretch activates the JAK/STAT pathway in rat cardiomyocytes. Circ. Res. 1999;84:1127-36.
33. Gomaraschi M, Basilico N, Sisto F, et al. High-density lipoproteins attenuate interleukin-6 production in endothelial cells exposed to pro-inflammatory stimuli. Biochim. Biophys. Acta. 2005;1736:136-43.
34. Wadham C, Albanese N, Roberts J, et al. High-density lipoproteins neutralize C-reactive protein proinflammatory activity. Circulation. 2004;109:2116-22.
35. Fazzini L, Ghirardi A, Limonta R, et al. Long-term outcomes of phenoclusters in preclinical heart failure with preserved and mildly reduced ejection fraction. ESC Heart Fail. 2024;11(5):3350-9.
36. Reddy YNV, Lewis GD, Shah SJ, et al. Characterization of the Obese Phenotype of Heart Failure With Preserved Ejection Fraction: A RELAX Trial Ancillary Study. Mayo Clin Proc. 2019;94(7):1199-209.
37. Reddy YNV, Obokata M, Testani JM, et al. Adverse Renal Response to Decongestion in the Obese Phenotype of Heart Failure With Preserved Ejection Fraction. J Card Fail. 2020;26(2):101-7. doi:10.1016/j.cardfail.2019.09.015.
38. Borlaug BA, Jensen MD, Kitzman DW, et al. Obesity and heart failure with preserved ejection fraction: new insights and pathophysiological targets. Cardiovasc Res. 2023;118:3434-50.
39. Obokata M, Reddy YNV, Pislaru SV, et al. Evidence supporting the existence of a distinct obese phenotype of heart failure with preserved ejection fraction. Circulation. 2017;136:6-19.
40. Reddy YNV, Rikhi A, Obokata M, et al. Quality of life in heart failure with preserved ejection fraction: importance of obesity, functional capacity, and physical inactivity. Eur J Heart Fail. 2020;22:1009-18.
41. Savji N, Meijers WC, Bartz TM, et al. The Association of Obesity and Cardiometabolic traits with incident HFpEF and HFrEF. JACC Heart Fail. 2018;6:701-9.
42. El Hajj MC, Litwin SE. Echocardiography in the Era of Obesity. J. Am. Soc. Echocardiogr. 2020;33:779-87.
43. Ellenberger K, Jeyaprakash P, Sivapathan S, et al. The Effect of Obesity on Echocardiographic Image Quality. Heart Lung Circ. 2022;31:207-15.
44. Palumbo P, Cannizzaro E, Palumbo MM, et al. Heart Failure and Cardiomyopathies: CT and MR from Basics to Advanced Imaging. Diagnostics (Basel). 2022;12(10):2298. doi:10.3390/diagnostics12102298.
45. Nagueh SF, Chang SM, Nabi F, et al. Cardiac Imaging in Patients With Heart Failure and Preserved Ejection Fraction. Circ Cardiovasc Imaging. 2017;10(9):e006547. doi:10.1161/CIRCIMAGING.117.006547.
46. Duca F, Kammerlander AA, Zotter-Tufaro C, et al. Interstitial Fibrosis, Functional Status, and Outcomes in Heart Failure With Preserved Ejection Fraction: Insights From a Prospective Cardiac Magnetic Resonance Imaging Study. Circ Cardiovasc Imaging. 2016;9(12):e005277. doi:10.1161/CIRCIMAGING.116.005277.
47. Ellims AH, Shaw JA, Stub D, et al. Diffuse myocardial fibrosis evaluated by post-contrast t1 mapping correlates with left ventricular stiffness. J Am Coll Cardiol. 2014;63(11):1112-8. doi:10.1016/j.jacc.2013.10.084.
48. Kwong RY, Kramer CM, Chandrashekhar Y. CMR Global Longitudinal Strain: A Better Tool for Unraveling the Links to Heart Failure Mortality. JACC Cardiovasc Imaging. 2018;11(10):1554-5. doi:10.1016/j.jcmg.2018.09.002.
49. Takagi Y, Ehara S, Okuyama T, et al. Comparison of determinations of left atrial volume by the biplane area-length and Simpson’s methods using 64-slice computed tomography. J Cardiol. 2009;53(2):257-64. doi:10.1016/j.jjcc.2008.11.012.
50. Vandenberg BF, Weiss RM, Kinzey J, et al. Comparison of left atrial volume by two-dimensional echocardiography and cine-computed tomography. Am J Cardiol. 1995;75(10):754-7. doi:10.1016/s0002-9149(99)80676-6.
51. Pieske B, Tschöpe C, de Boer RA, et al. How to diagnose heart failure with preserved ejection fraction: the HFA-PEFF diagnostic algorithm: a consensus recommendation from the Heart Failure Association (HFA) of the European Society of Cardiology (ESC). Eur Heart J. 2019;40:3297-317.
52. Reddy YNV, Carter RE, Obokata M, et al. A Simple, Evidence-Based Approach to Help Guide Diagnosis of Heart Failure With Preserved Ejection Fraction. Circulation. 2018;138:861-70.
53. Mueller C, McDonald K, de Boer RA, et al. Heart Failure Association of the European Society of Cardiology practical guidance on the use of natriuretic peptide concentrations. Eur J Heart Fail. 2019;21:715-31.
54. Bayes-Genis A, Lloyd-Jones DM, van Kimmenade RR, et al. Effect of body mass index on diagnostic and prognostic usefulness of amino-terminal pro-brain natriuretic peptide in patients with acute dyspnea. Arch Intern Med. 2007;167:400-7.
55. Jung M-H, Shin M-S. Obesity-related heart failure with preserved ejection fraction: Diagnostic and therapeutic challenges. Korean J. Intern. Med. 2023;38:157-66.
56. Kosyakovsky LB, Liu EE, Wang JK, et al. Uncovering Unrecognized Heart Failure With Preserved Ejection Fraction Among Individuals With Obesity and Dyspnea. Circ Heart Fail. 2024;17(5):e011366. doi:10.1161/CIRCHEARTFAILURE.123.011366.
57. Anker SD, Ponikowski PP, Clark AL, et al. Cytokines and neurohormones relating to body composition alterations in the wasting syndrome of chronic heart failure. Eur Heart J. 1999;20:683-93.
58. Rao VN, Fudim M, Mentz RJ, et al. Regional adiposity and heart failure with preserved ejection fraction. Eur J Heart Fail. 2020;22:1540-50.
59. Selvaraj S, Kim J, Ansari BA, et al. Body composition, natriuretic peptides, and adverse outcomes in heart failure with preserved and reduced ejection fraction. JACC Cardiovasc Imaging. 2021;14:203-15.
60. Antoniades C, Tousoulis D, Vavlukis M, et al. Perivascular adipose tissue as a source of therapeutic targets and clinical biomarkers. Eur Heart J. 2023;44:3827-44.
61. Oikonomou EK, Marwan M, Desai MY, et al. Non-invasive detection of coronary inflammation using computed tomography and prediction of residual cardiovascular risk (the CRISP CT study): a post-hoc analysis of prospective outcome data. Lancet. 2018;392:929-39.
62. Oikonomou EK, Antonopoulos AS, Schottlander D, et al. Standardized measurement of coronary inflammation using cardiovascular computed tomography: integration in clinical care as a prognostic medical device. Cardiovasc Res. 2021;117:2677-90.
63. Никитинская О. А., Торопцова Н. В. Определение содержания жира в составе тела методом биоэлектрического импеданса и двуэнергетической рентгеновской абсорбциометрии. Медицинский алфавит. 2021;(16):30-4.
64. Frija-Masson J, Mullaert J, Vidal-Petiot E, et al. Accuracy of smart scales on weight and body composition: observational study. JMIR Mhealth Uhealth. 2021;9:e22487.
65. Oikonomou EK, Williams MC, Kotanidis CP, et al. A novel machine learning-derived radiotranscriptomic signature of perivascular fat improves cardiac risk prediction using coronary CT angiography. Eur Heart J. 2019;40:3529-43.
66. Kosiborod MN, Abildstrom SZ, Borlaug BA, et al.; STEP-HFpEF Trial Committees and Investigators. Semaglutide in patients with heart failure with preserved ejection fraction and obesity. N Engl J Med. 2023;389:1069-84.
67. Kosiborod MN, Petrie MC, Borlaug BA, et al.; STEP-HFpEF DM Trial Committees and Investigators. Semaglutide in patients with obesity-related heart failure and type 2 diabetes. N Engl J Med. 2024;390:1394-407.
68. Packer M, Zile MR, Kramer CM, et al.; SUMMIT Trial Study Group. Tirzepatide for heart failure with preserved ejection fraction and obesity. N Engl J Med. 2025;392:427-37.
69. Kitzman DW, Brubaker P, Morgan T, et al. Effect of caloric restriction or aerobic exercise training on peak oxygen consumption and quality of life in obese older patients with heart failure with preserved ejection fraction: A randomized clinical trial. JAMA. 2016;315:36-46.
70. Evangelista LS, Heber D, Li Z, et al. Reduced body weight and adiposity with a high-protein diet improves functional status, lipid profiles, glycemic control, and quality of life in patients with heart failure: A feasibility study. J Cardiovasc Nurs. 2009;24:207-15.
71. Gonzalez-Islas D, Orea-Tejeda A, Castillo-Martínez L, et al. The effects of a low-carbo-hydrate diet on oxygen saturation in heart failure patients: A randomized controlled clinical trial. Nutr Hosp. 2017;34:792-8.
72. Evangelista LS, Jose MM, Sallam H, et al. High-protein vs. standard-protein diets in overweight and obese patients with heart failure and diabetes mellitus: Findings of the Pro-HEART trial. ESC Heart Fail. 2021;8:1342-8.
73. Brubaker PH, Nicklas BJ, Houston DK, et al. A randomized, controlled trial of resistance training added to caloric restriction plus aerobic exercise training in obese heart failure with preserved ejection fraction. Circ Heart Fail. 2023;16:e010161.
74. Singh S, Takeda K, Kurlansky P. The impact of obesity on outcomes after left ventricular assist device implantation: Time to settle the debate. Eur J Cardiothorac Surg. 2022;62:ezac425.
75. Jaiswal A, Truby LK, Chichra A, et al. Impact of obesity on ventricular assist device out-comes. J Card Fail. 2020;26:287-97.
76. Clerkin KJ, Naka Y, Mancini DM, et al. The impact of obesity on patients bridged to transplantation with continuous-flow left ventricular assist devices. JACC Heart Fail. 2016;4:761-8.
77. Myers J, Prakash M, Froelicher V, et al. Exercise capacity and mortality among men referred for exercise testing. N Engl J Med. 2002;346:793-801.
78. Horwich TB, Broderick S, Chen L, et al. Relation among body mass index, exercise training, and outcomes in chronic systolic heart failure. Am J Cardiol. 2011;108:1754-9.
79. Adamson C, Jhund PS, Docherty KF, et al. Efficacy of dapagliflozin in heart failure with reduced ejection fraction according to body mass index. Eur J Heart Fail. 2021;23:1662-72.
80. Adamson C, Kondo T, Jhund PS, et al. Dapagliflozin for heart failure according to body mass index: The DELIVER trial. Eur Heart J. 2022;43:4406-17.
81. Olivier A, Pitt B, Girerd N, et al. Effect of eplerenone in patients with heart failure and reduced ejection fraction: Potential effect modification by abdominal obesity. Insight from the EMPHASIS-HF trial. Eur J Heart Fail. 2017;19:1186-97.
82. Butt JH, Henderson AD, Jhund PS, et al. Finerenone, Obesity, and Heart Failure With Mildly Reduced/Preserved Ejection Fraction: Prespecified Analysis of FINEARTS-HF. J Am Coll Cardiol. 2025;85(2):140-55.
83. Vaduganathan M, Docherty KF, Claggett BL, et al. SGLT-2 inhibitors in patients with heart failure: A comprehensive meta-analysis of five randomised controlled trials. Lancet. 2022;400:757-67.
84. Requena-Ibáñez JA, Santos-Gallego CG, Rodriguez-Cordero A, et al. Mechanistic Insights of Empagliflozin in Nondiabetic Patients With HFrEF: From the EMPA-TROPISM Study. JACC Heart Fail. 2021;9(8):578-89.
85. James WP, Caterson ID, Coutinho W, et al.; SCOUT Investigators. Effect of sibutramine on cardiovascular outcomes in overweight and obese subjects. N Engl J Med. 2010;363:905-17.
86. Colman E, Golden J, Roberts M, et al. The FDA’s assessment of two drugs for chronic weight management. N Engl J Med. 2012;367:1577-9.
87. Greenway FL, Fujioka K, Plodkowski RA, et al.; COR-I Study Group. Effect of naltrexone plus bupropion on weight loss in overweight and obese adults (COR-I): A multicentre, randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 2010;376: 595-605.
88. Cristancho C, Kim DW, Apovian CM. Nutrient-Stimulating Hormone-Based Therapies for Obesity. Endocrinol Metab Clin North Am. 2025;54(1):103-19.
89. Marso SP, Daniels GH, Brown-Frandsen K, et al.; LEADER Steering Committee; LEADER Trial Investigators. Liraglutide and Cardiovascular Outcomes in Type 2 Diabetes. N Engl J Med. 2016;375(4):311-22.
90. Margulies KB, Hernandez AF, Redfield MM, et al.; NHLBI Heart Failure Clinical Research Network. Effects of Liraglutide on Clinical Stability Among Patients With Advanced Heart Failure and Reduced Ejection Fraction: A Randomized Clinical Trial. JAMA. 2016;316(5):500-8.
91. Jorsal A, Kistorp C, Holmager P, et al. Effect of liraglutide, a glucagon-like peptide-1 analogue, on left ventricular function in stable chronic heart failure patients with and without diabetes (LIVE) — a multicentre, double-blind, randomised, placebo-controlled trial. Eur J Heart Fail. 2017;19:69-77.
92. Butler J, Shah SJ, Petrie MC, et al. Semaglutide versus placebo in people with obesity-related heart failure with preserved ejection fraction: a pooled analysis of the STEP-HFpEF and STEP-HFpEF DM randomised trials. Lancet. 2024;403:1635-48.
93. Lincoff AM, Brown-Frandsen K, Colhoun HM, et al.; SELECT Trial Investigators. Semaglutide and Cardiovascular Outcomes in Obesity without Diabetes. N Engl J Med. 2023;389(24):2221-32.
94. Deanfield J, Verma S, Scirica BM, et al.; SELECT Trial Investigators. Semaglutide and cardiovascular outcomes in patients with obesity and prevalent heart failure: a prespecified analysis of the SELECT trial. Lancet. 2024;404(10454):773-86.
95. Kosiborod MN, Deanfield J, Pratley R, et al. Semaglutide versus placebo in patients with heart failure and mildly reduced or preserved ejection fraction: a pooled analysis of the SELECT, FLOW, STEP-HFpEF, and STEP-HFpEF DM randomised trials. Lancet. 2024;404(10456):949-61. doi:10.1016/S0140-6736(24)01643-X.
96. Aamir AB, Latif R, Alqoofi JF, et al. Comparative Efficacy of Tirzepatide vs. Semaglutide in Reducing Body Weight in Humans: A Systematic Review and Meta-Analysis of Clinical Trials and Real-World Data. J Clin Med Res. 2025;17(5):285-96.
97. Han H, Zhu T, Guo Y, et al. Impact of prior bariatric surgery on outcomes of hospitalized patients with heart failure: A population-based study. Surg Obes Relat Dis. 2019;15:469-77.
98. Aleassa EM, Khorgami Z, Kindel TL, et al. Impact of bariatric surgery on heart failure mortality. Surg Obes Relat Dis. 2019;15:1189-96.
99. Mikhalkova D, Holman SR, Jiang H, et al. Bariatric surgery-induced cardiac and lipidomic changes in obesity-related heart failure with preserved ejection fraction. Obesity (Silver Spring). 2018;26:284-90.
100. Hughes D, Aminian A, Tu C, et al. Impact of Bariatric Surgery on Left Ventricular Structure and Function. J Am Heart Assoc. 2024;13(1):e031505.