Статья
Хроническая болезнь почек при метаболическом синдроме
Метаболический синдром (МС) является значимым модифицируемым фактором риска развития и прогрессирования хронической болезни почек (ХБП). Представлены данные о взаимосвязях между МС в целом и его отдельными компонентами с ХБП. Рассмотрены ключевые патогенетические механизмы развития ХБП при МС, включая инсулинорезистентность, ожирение, артериальную гипертензию, системное воспаление и окислительный стресс, активацию нейрогуморальных систем, липотоксичность. Обсуждаются вопросы особенностей диагностики и лечения ХБП у пациентов с МС. Особое внимание уделено комплексному подходу к лечению пациентов с ХБП, направленному на снижение риска прогрессирования ХБП и сердечно-сосудистых осложнений.
1. Valizadeh A, Nikoohemmat M, Ebadinejad A, et al. Metabolic syndrome as a risk factor for the development of kidney dysfunction: a meta-analysis of observational cohort studies. J Diabetes Metab Disord. 2023;23(1):215-27. doi:10.1007/s40200-023-01348-5.
2. Alizadeh S, Ahmadi M, Ghorbani Nejad B, et al. Metabolic Syndrome and its Components Are Associated With Increased Chronic Kidney Disease Risk: Evidence From a Meta-Analysis on 11109 003 Participants From 66 Studies. Int J Clin Pract. 2018;23:e13201. doi:10.1111/ijcp.13201.
3. Garofalo C, Borelli S, Minutolo R, et al. A systematic review and metaanalysis suggests obesity predicts onset of chronic kidney disease in the general population. Kidney Int. 2017;91:1224-35. doi:10.1016/j.kint.2016.12.013.
4. Chang AR, Grams ME, Ballew SH, et al. Adiposity and risk of decline in glomerular filtration rate: meta-analysis of individual participant data in a global consortium. BMJ. 2019;364:k5301. doi:10.1136/bmj.k5301.
5. Japar KV, Hariyanto TI, Mardjopranoto MS. Relationship between Phenotype Models Based on Waist Circumference and Triglyceride Levels and the Risk of Chronic Kidney Disease: A Systematic Review and Meta-analysis. J Obes Metab Syndr. 2023;32(3):236-46. doi:10.7570/jomes23037.
6. Iqbal J, Wu HX, Nawaz MA, et al. Risk of incident chronic kidney disease in metabolically healthy obesity and metabolically unhealthy normal weight: A systematic review and meta-analysis. Obes Rev. 2024;25(2):e13656. doi:10.1111/obr.13656.
7. Shen R, Lin L, Bin Z, et al. The U-shape relationship between insulin resistance-related indexes and chronic kidney disease: a retrospective cohort study from National Health and Nutrition Examination Survey 2007-2016. Diabetol Metab Syndr. 2024;16:168. doi:10.1186/s13098-024-01408-7.
8. Wu Y, Liu C, Cao J. Association between triglyceride-glucose index and its composite obesity indexes and cardio-renal disease: analysis of the NHANES 2013-2018 cycle. Front Endocrinol (Lausanne). 2025;16:1505808. doi:10.3389/fendo.2025.1505808.
9. Ma A, Liu F, Wang C, et al. Both Insulin Resistance and Metabolic Syndrome Accelerate the Progression of Chronic Kidney Disease Among Chinese Adults: Results From a 3-Year Follow-Up Study. Int Urol Nephrol. 2018;12:2239-44. doi:10.1007/s11255-018-1934-6.
10. Lin L, Pan X, Feng Y, Yang J. Chronic kidney disease combined with metabolic syndrome is a non-negligible risk factor. Ther Adv Endocrinol Metab. 2024;15:20420188241252309. doi:10.1177/20420188241252309.
11. Alswat KA, Althobaiti A, Alsaadi K, et al. Prevalence of MetS among the end-stage renal disease patients on hemodialysis. J Clin Med Res. 2017;9:687-94. doi:10.14740/jocmr3064w.
12. AlShelleh S, AlAwwa I, Oweis A, et al. Prevalence of MetS in dialysis and transplant patients. Diabetes Metab Syndr Obes. 2019;12:575-9. doi:10.2147/DMSO.S200362.
13. Lin L, Tan W, Pan X, et al. Metabolic Syndrome-Related Kidney Injury: A Review and Update. Front. Endocrinol. 2022;13:904001. doi:10.3389/fendo.2022.904001.
14. Gupta H, Bhandari U. Molecular Insight into Obesity-Associated Nephropathy: Clinical Implications and Possible Strategies for its Management. Curr Drug Targets. 2025;26(3):188-202. doi:10.2174/0113894501314788241008115712.
15. García-Carro C, Vergara A, Bermejo S, et al. A Nephrologist perspective on obesity: from kidney injury to clinical management. Front Med. 2021;8:1-11. doi:10.3389/fmed.2021.655871.
16. Sharma I, Liao Y, Zheng X, Ys K. New pandemic: obesity and associated nephropathy. Front Med (Lausanne). 2021:8:673556. doi:10.3389/fmed.2021.673556.
17. Chagnac A, Zingerman B, Rozen-Zvi B, Herman-Edelstein M. Consequences of glomerular hyperfltration: the role of physical forces in the pathogenesis of chronic kidney disease in diabetes and obesity. Nephron. 2019;143(1):38-42. doi:10.1159/000499486.
18. Avgoustou E, Tzivaki I, Diamantopoulou G, et al. Obesity-Related Chronic Kidney Disease: From Diagnosis to Treatment. Diagnostics (Basel). 2025;15(2):169. doi:10.3390/diagnostics15020169.
19. Tsuboi N, Okabayashi Y. The renal pathology of obesity: structure-function correlations. Semin Nephrol. 2021;41:296-306. doi:10.1016/j.semnephrol.2021.06.002.
20. D’Agati VD, Chagnac A, de Vries APJ, et al. Obesity-related glomerulopathy: clinical and pathologic characteristics and pathogenesis. Nat Rev Nephrol. 2016;12:453-71. doi:10.1038/nrneph.2016.75.
21. Haruhara K, Okabayashi Y, Sasaki T, et al. Podocyte density as a predictor of long-term kidney outcome in obesity-related glomerulopathy. Kidney Int. 2024;106:496-507. doi:10.1016/j.kint.2024.05.025.
22. Valdez Imbert R, Seng NSHL, Stokes MB, Jim B. Obesity-related glomerulopathy in the presence of APOL1 risk alleles. BMJ Case Rep. 2022;15:e249624. doi:10.1136/bcr-2022-249624.
23. Okabayashi Y, Tsuboi N, Sasaki T, et al. Single-nephron GFR in patients with obesity-related glomerulopathy. Kidney Int Rep. 2020;5:1218-27. doi:10.1016/j.ekir.2020.05.013.
24. Vecchiola A, Lagos CF, Carvajal CA, et al. Aldosterone production and signaling dysregulation in obesity. Curr Hypertens Rep. 2016;18:20-7. doi:10.1007/s11906-016-0626-9.
25. Camara NO, Iseki K, Kramer H, et al. Kidney disease and obesity: epidemiology, mechanisms and treatment. Nat Rev Nephrol. 2017;13:181-90. doi:10.1038/nrneph.2016.191.
26. Mitrofanova A, Merscher S, Fornoni A. Kidney lipid dysmetabolism and lipid droplet accumulation in chronic kidney disease. Nat Rev Nephrol. 2023;19:629-45. doi:10.1038/s41581-023-00741-w.
27. Hti Lar Seng NS, Lohana P, Chandra S, Jim B. The fatty kidney and beyond: a silent epidemic. Am J Med. 2023;136:965-74. doi:10.1016/j.amjmed.2023.06.025.
28. Schelling JR. The contribution of lipotoxicity to diabetic kidney disease. Cells. 2022;11:3236. doi:10.3390/cells11203236.
29. Mantovani A, Petracca G, Beatrice G, et al. Non-alcoholic fatty liver disease and risk of incident chronic kidney disease: an updated metaanalysis. Gut. 2022;71:156-62. doi:10.1136/gutjnl-2020-323082.
30. Sinn DH, Kang D, Jang HR, et al. Development of chronic kidney disease in patients with non-alcoholic fatty liver disease: a cohort study. J Hepatol. 2017;67:1274-80. doi:10.1016/j.jhep.2017.08.024.
31. Marcuccilli M, Chonchol M. NAFLD and chronic kidney disease. Int J Mol Sci. 2016;17:562. doi:10.3390/ijms17040562.
32. Mori K, Tanaka M, Sato T, et al. Metabolic dysfunction-associated steatotic liver disease (SLD) and alcohol-associated liver disease, but not SLD without metabolic dysfunction, are independently associated with new onset of chronic kidney disease during a 10-year follow-up period. Hepatol Res. 2024. doi:10.1111/hepr.14097. Epub ahead of print.
33. Gao J, Li Y, Zhang Y, et al. Severity and remission of metabolic dysfunction-associated fatty/steatotic liver disease with chronic kidney disease occurrence. J Am Heart Assoc. 2024;13:e032604. doi:10.1161/JAHA.123.032604.
34. Vespasiani-Gentilucci U, Gallo P, Dell’Unto C, et al. Promoting genetics in non-alcoholic fatty liver disease: combined risk score through polymorphisms and clinical variables. World J Gastroenterol. 2018;24:4835-45. doi:10.3748/wjg.v24.i43.4835.
35. Bilson J, Mantovani A, Byrne CD, Targher G. Steatotic liver disease, MASLD and risk of chronic kidney disease. Diabetes Metab. 2024;50:101506. doi:10.1016/j.diabet.2023.101506.
36. Li X, Bhattacharya D, Yuan Y, et al. Chronic kidney disease in a murine model of non-alcoholic steatohepatitis (NASH). Kidney Int. 2024;105:540-61. doi:10.1016/j.kint.2023.12.009.
37. Vallianou N, Stratigou T, Christodoulatos GS, Dalamaga M. Understanding the Role of the Gut Microbiome and Microbial Metabolites in Obesity and Obesity-Associated Metabolic Disorders: Current Evidence and Perspectives. Curr Obes Rep. 2019;8:317-32. doi:10.1007/s13679-019-00352-2.
38. Randeni N, Bordiga M, Xu BA. Comprehensive Review of the Triangular Relationship among Diet-Gut Microbiota-Inflammation. Int J Mol Sci. 2024;25:9366. doi:10.3390/ijms25179366.
39. Vallianou NG, Kounatidis D, Panagopoulos F, et al. Gut Microbiota and Its Role in the Brain-Gut-Kidney Axis in Hypertension. Curr Hypertens Rep. 2023;25:367-76. doi:10.1007/s11906-023-01263-3.
40. Kounatidis D, Vallianou NG, Stratigou T, et al. The Kidney in Obesity: Current Evidence, Perspectives and Controversies. Curr Obes Rep. 2024;13;680-702. doi:10.1007/s13679-024-00583-y.
41. Kidney Disease: Improving Global Outcomes (KDIGO) CKD Working Group. KDIGO 2024 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease. Kidney Int. 2024;105(4S):S117-S314. doi:10.1016/j.kint.2023.10.018.
42. Grangeon-Chapon C, Laurain A, Esnault VLM, et al. Extracellular fluid volume: a suitable indexation variable to assess impact of bariatric surgery on glomerular fltration rate in patients with chronic kidney disease. PLoS ONE. 2021;16(8):e0256234. doi:10.1371/journal.pone.0256234.
43. Erstad BL, Nix DE. Assessment of kidney function in patients with extreme obesity: a narrative review. Ann Pharmacother. 2021;55(1):80-8. doi:10.1177/1060028020935580.
44. López-Martínez M, Luis-Lima S, Morales E, et al. The estimation of GFR and the adjustment for BSA in overweight and obesity: A dreadful combination of two errors. Int. J. Obes. 2020;44:1129-40. doi:10.1038/s41366-019-0476-z.
45. Alaje AK, Adedeji ΤA, Adedoyin AR, Idogun SE. Creatinine and cystatin C-based evaluation of renal function among obese subjects in Benin City, Nigeria. Saudi J Kidney Dis Transplant. 2019;30:648-54. doi:10.4103/1319-2442.261339.
46. Lemoine S, Guebre-Egziabher F, Sens F, et al. Accuracy of GFR estimation in obese patients. Clin J Am Soc Nephrol. 2014;9:720-7. doi:10.2215/CJN.03610413.
47. Schwartz P, Capotondo MM, Quaintenne M, et al. Obesity and glomerular filtration rate. Int Urol Nephrol. 2024;56(5):1663-8. doi:10.1007/s11255-023-03862-0.
48. Musso CG, González-Torres H. How to evaluate glomerular filtration rate in the obese patient. Rev Colomb Nefrol. 2019;6(2):84-6.
49. Mullins TP, Schock-Kusch D, Gallo LA. Transdermal Measurement of Glomerular Filtration Rate in Preclinical Research. Methods Mol. Biol. 2023;2664:309-15. doi:10.1007/978-1-0716-3179-9_19.
50. Herman-Edelstein Μ, Weinstein Τ, Chagnac A. Obesity-Related Glomerulopathy: Clinical Management. Semin Nephrol. 2021;41:358-70. doi:10.1016/j.semnephrol.2021.06.007.
51. Bienaimé F, Muorah M, Metzger M, et al. Combining robust urine biomarkers to assess chronic kidney disease progression. eBioMedicine. 2023;93:104635. doi:10.1016/j.ebiom.2023.104635.
52. Earle A, Bessonny M, Benito J, et al. Urinary Exosomal MicroRNAs as Biomarkers for Obesity-Associated Chronic Kidney Disease. J Clin Med. 2022;11(18):5271. doi:10.3390/jcm11185271.
53. Barinotti A, Radin M, Cecchi I, et al. Serum Biomarkers of Renal Fibrosis: A Systematic Review. Int J Mol Sci. 2022;23(22):14139. doi:10.3390/ijms232214139.
54. Mende C, Einhorn D. Fatty kidney disease: The importance of ectopic fat deposition and the potential value of imaging. J Diabetes. 2022;14:73-8. doi:10.1111/1753-0407.13232.
55. Jiang Z, Wang Y, Zhao X, et al. Obesity and chronic kidney disease. Am J Physiol Endocrinol Metab. 2023;324:E24-E41. doi:10.1152/ajpendo.00179.2022.
56. Lu F, Fan J, Liu L, et al. Abdominal adipose tissue and type 2 diabetic kidney disease: adipose radiology assessment, impact, and mechanisms. Abdom Radiol (NY). 2024;49(2):560-74. doi:10.1007/s00261-023-04062-1.
57. Tang H, Xie L, Liu L, et al. Renal fat deposition measured on dixon-based MRI is significantly associated with early kidney damage in obesity. Abdom Radiol (NY). 2024;49(10):3476-84. doi:10.1007/s00261-024-04391-9.
58. Xu S, Ma J, Zheng Y, et al. Para-perirenal fat thickness is associated with reduced glomerular filtration rate regardless of other obesity-related indicators in patients with type 2 diabetes mellitus. PLoS One. 2023;18(10):e0293464. doi:10.1371/journal.pone.0293464. eCollection 2023.
59. Kaneko K, Mitsuno R, Kojima D, et al. Renal sinus fat is associated with intrarenal hemodynamic abnormalities independent of visceral fat in patients with chronic kidney disease. Obes Res Clin Pract. 2024;18(2):118-23. doi:10.1016/j.orcp.2024.03.005.
60. Fujioka H, Koike T, Imamura T, et al. Prognostic impact of renal sinus fat accumulation in patients with chronic kidney disease. Clinical and Experimental Nephrology. 2023;27:613-21. doi:10.1007/s10157-023-02350-0.
61. Tangri N, Stevens LA, Griffith J, et al. A predictive model for progression of chronic kidney disease to kidney failure. JAMA. 2011;305:1553-9. doi:10.1001/jama.2011.451.
62. Evidence review for the best combination of measures to identify increased risk of progression in adults, children and young people: chronic kidney disease: evidence review F. National Institute for Health and Care Excellence (NICE); 2021. https://www.ncbi.nlm.nih.gov/books/NBK574720/. ISBN-13: 978-1-4731-4233-6.
63. Ramspek CL, de Jong Y, Dekker FW, van Diepen M. Towards the best kidney failure prediction tool: a systematic review and selection aid. Nephrol Dial Transplant. 2020;35:1527-38. doi:10.1093/ndt/gfz018.
64. Grams ME, Brunskill NJ, Ballew SH, et al. Development and validation of prediction models of adverse kidney outcomes in the population with and without diabetes. Diabetes Care. 2022;45:2055-63. doi:10.2337/dc22-0698.
65. Ndumele CE, Rangaswami J, Chow SL, et al. Cardiovascular-kidney-metabolic health: a presidential advisory from the American Heart Association. Circulation. 2023;148:1606-35. doi:10.1161/CIR.0000000000001184.
66. Ndumele CE, Neeland IJ, Tuttle KR, et al. A synopsis of the evidence for the science and clinical management of cardiovascular-kidney-metabolic (CKM) syndrome: a scientific statement from the American Heart Association. Circulation. 2023;148:1636-64. doi:10.1161/CIR.0000000000001186.
67. Khan SS, Matsushita K, Sang Y, et al. Development and validation of the American Heart Association’s PREVENT equations. Circulation. 2024;149:430-49. doi:10.1161/CIRCULATIONAHA.123.067626.
68. House AA, Wanner C, Sarnak MJ, et al. Heart failure in chronic kidney disease: conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference. Kidney Int. 2019;95:1304-17. doi:10.1016/j.kint.2019.02.022.
69. Lin JH, Wu HC, Huang WH, et al. Association between management of metabolic syndrome and progression of early-stage chronic kidney disease: an observational cohort study. Ren Fail. 2015;37(1):29-36. doi:10.3109/0886022X.2014.964140.
70. Кобалава Ж. Д., Конради А. О., Недогода С. В. и др. Артериальная гипертензия у взрослых. Клинические рекомендации 2024. Российский кардиологический журнал. 2024;29(9):6117. doi:10.15829/1560-4071-2024-6117. EDN: GUEWLU.
71. Ежов М. В., Кухарчук В. В., Сергиенко И. В. и др. Нарушения липидного обмена. Клинические рекомендации 2023. Российский кардиологический журнал. 2023;28(5):5471. doi:10.15829/1560-4071-2023-5471.
72. Theodorakis N, Nikolaou M. Integrated management of cardiovascular–renal–hepatic–metabolic syndrome: expanding roles of SGLT2is, GLP-1RAs, and GIP/GLP-1RAs. Biomedicines. 2025;13(1):135. doi:10.3390/biomedicines13010135.
73. Lavie CJ, Ozemek C, Carbone S, et al. Sedentary behavior, exercise, and cardiovascular health. Circ Res. 2019;124:799-815.
74. Heiwe S, Jacobson SH. Exercise training in adults with CKD: a systematic review and meta-analysis. Am J Kidney Dis. 2014;64:383-93. doi:10.1053/j.ajkd.2014.03.020.
75. Look AHEAD Research Group. Effect of a long-term behavioural weight loss intervention on nephropathy in overweight or obese adults with type 2 diabetes: a secondary analysis of the Look AHEAD randomised clinical trial. Lancet Diabetes Endocrinol. 2014;2:801-9. doi:10.1016/S2213-8587(14)70156-1.
76. Díaz-López A, Becerra-Tomás N, Ruiz V, et al. Effect of an intensive weight-loss lifestyle intervention on kidney function: a randomized controlled trial. Am J Nephrol. 2021;52:45-58. doi:10.1159/000513664.
77. Popoviciu MS, Paduraru L, Yahya G, et al. Emerging role of GLP-1 agonists in obesity: a comprehensive review of randomised controlled trials. Int J Mol Sci. 2023;24:10449. doi:10.3390/ijms241310449.
78. Lincoff AM, Brown-Frandsen K, Colhoun HM, et al. Semaglutide and cardiovascular outcomes in obesity without diabetes. N Engl J Med. 2023;389:2221-32. doi:10.1056/NEJMoa2307563.
79. Colhoun HM, Lingvay I, Brown PM, et al. Long-term kidney outcomes of semaglutide in obesity and cardiovascular disease in the SELECT trial. Nat Med. 2024;30:2058-66. doi:10.1038/s41591-024-03015-5.
80. Perkovic V, Tuttle KR, Rossing P, et al. Effects of semaglutide on chronic kidney disease in patients with type 2 diabetes. N Engl J Med. 2024;391:109-21. doi:10.1056/NEJMoa2403347.
81. Chang AR, Grams ME, Navaneethan SD. Bariatric Surgery and Kidney-Related Outcomes. Kidney Int Rep. 2017;2(2):261-70. doi:10.1016/j.ekir.2017.01.010.
82. Kidney Disease: Improving Global Outcomes (KDIGO) Diabetes Work Group. KDIGO 2022 clinical practice guideline for diabetes management in chronic kidney disease. Kidney Int. 2022;102(5S):S1-S127. doi:10.1016/j.kint.2022.06.008.
83. Marx N, Federici M, Schutt K, et al. 2023 ESC guidelines for the management of cardiovascular disease in patients with diabetes. Eur Heart J. 2023;44:4043-140. doi:10.1093/eurheartj/ehad192.
84. Zoungas S, Arima H, Gerstein HC, et al. Effects of intensive glucose control on microvascular outcomes in patients with type 2 diabetes: a meta-analysis of individual participant data from randomised controlled trials. Lancet Diabetes Endocrinol. 2017;5:431-7. doi:10.1016/S2213-8587(17)30104-3.
85. Wong MG, Perkovic V, Chalmers J, et al. Long-term benefits of intensive glucose control for preventing end-stage kidney disease: ADVANCE-ON. Diabetes Care. 2016;39:694-700. doi:10.2337/dc15-2322.
86. Nuffield Department of Population Health Renal Studies Group. SGLT2 inhibitor Meta-Analysis Cardio-Renal Trialists’ Consortium. Impact of diabetes on the effects of sodium glucose co-transporter-2 inhibitors on kidney outcomes: collaborative meta-analysis of large placebo controlled trials. Lancet. 2022;400:1788-801. doi:10.1016/S0140-6736(22)02074-8.
87. Neuen BL, Young T, Heerspink HJL, et al. SGLT2 inhibitors for the prevention of kidney failure in patients with type 2 diabetes: a systematic review and meta-analysis. Lancet Diabetes Endocrinol. 2019;7:845-54. doi:10.1016/S2213-8587(19)30256-6.
88. Zhu D, Judge PK, Wanner C, et al. The prevention and management of chronic kidney disease among patients with metabolic syndrome Kidney International. 2025;107(5):816-24. doi:10.1016/j.kint.2024.12.021.
89. Ferreira NS, Tostes RC, Paradis P, Schiffrin EL. Aldosterone, inflammation, immune system, and hypertension. Am J Hypertens. 2021;34:15-27. doi:10.1093/ajh/hpaa137.
90. Mogi M. Aldosterone breakthrough from a pharmacological perspective. Hypertens Res. 2022;45:967-75. doi:10.1038/s41440-022-00913-4.
91. Vaduganathan M, Filippatos G, Claggett BL, et al. Finerenone in heart failure and chronic kidney disease with type 2 diabetes: the FINE-HEART pooled analysis of cardiovascular, kidney, and mortality outcomes. Nat Med. 2024;30:3758-64. doi:10.1038/s41591-024-03264-4.
92. Haynes R, Lewis D, Emberson J, et al. Effects of lowering LDL cholesterol on progression of kidney disease. J Am Soc Nephrol. 2014;25:1825-33. doi:10.1681/ASN.2013090965.
93. Cholesterol Treatment Trialists’ Collaboration, Herrington WG, Emberson J, et al. Impact of renal function on the effects of LDL cholesterol lowering with statin-based regimens: a meta-analysis of individual participant data from 28 randomised trials. Lancet Diabetes Endocrinol. 2016;4:829-39. doi:10.1016/S2213-8587(16)30156-5.
94. Velarde GP, Choudhary N, Bravo-Jaimes K, et al. Effect of Atorvastatin on Lipogenic, Inflammatory and Thrombogenic Markers in Women With the Metabolic Syndrome. Nutr Metab Cardiovasc Dis. 2021;2:634-40. doi:10.1016/j.numecd.2020.10.002.
95. Mafham M, Haynes R. PCSK9 inhibition: ready for prime time in CKD? Kidney Int. 2018;93:1267-9. doi:10.1016/j.kint.2018.01.030.
96. Amore BM, Sasiela WJ, Ries DK, et al. Pharmacokinetics of bempedoic acid in patients with renal impairment. Clin Transl Sci. 2022;15:789-98. doi:10.1111/cts.13202.
97. Sarafdis P, Iatridi F, Ferro C, et al. Mineralocorticoid receptor antagonist use in chronic kidney disease with type 2 diabetes: a clinical practice document by the European Renal Best Practice (ERBP) board of the European Renal Association (ERA). Clin Kidney J. 2023;16(11):1885-907. doi:10.1093/ckj/sfad139.
98. Jakubowska A, le Roux CW, Viljoen A. The Road towards Triple Agonists: Glucagon-Like Peptide 1, Glucose-Dependent Insulinotropic Polypeptide and Glucagon Receptor — An Update. Endocrinol Metab. 2024;39(1):12-22. doi:10.3803/EnM.2024.1942.
99. Birker-Robaczewska M, Boucher M, Ranieri G, et al. The novel lysophosphatidic acid receptor 1-selective antagonist, ACT-1016-0707, has unique binding properties that translate into effective antifibrotic and anti-inflammatory activity in different models of pulmonary fibrosis. J Pharmacol Exp Ther. 2025;392(3):103396. doi:10.1016/j.jpet.2025.103396.
100. Heerspink HJL, Kiyosue A, Wheeler DC, et al. Zibotentan in combination with dapaglifozin compared with dapaglifozin in patients with chronic kidney disease (ZENITH-CKD): a multicentre, randomised, active-controlled, phase 2b, clinical trial. Lancet. 2023;402(10416):2004-17. doi:10.1016/S0140-6736(23)02230-4.
101. Judge PK, Tuttle KR, Staplin N, et al. The potential for improving cardiorenal outcomes in chronic kidney disease with the aldosterone synthase inhibitor vicadrostat (BI 690517): a rationale for the EASi-KIDNEY trial. Nephrol Dial Transplant. 2025;40(6):1175-86. doi:10.1093/ndt/gfae263.
102. Ridker PM, Devalaraja M, Baeres FMM, et al. IL-6 inhibition with ziltivekimab in patients at high atherosclerotic risk (RESCUE): a double blind, randomised, placebo-controlled, phase 2 trial. Lancet. 2021;397:2060-9. doi:10.1016/S0140-6736(21)00520-1.
103. Neumiller JJ, Alicic RZ, Tuttle KR. Optimization of guideline-directed medical therapies in patients with diabetes and chronic kidney disease. Clin Kidney J. 2023;17(1):sfad285. doi:10.1093/ckj/sfad285.
104. Georgianos PI, Vaios V, Koufakis T, Liakopoulos V. Slowing the Progression of Chronic Kidney Disease in Patients with Type 2 Diabetes Using Four Pillars of Therapy: The Time to Act is Now. Drugs. 2024;84(11):1337-46. doi:10.1007/s40265-024-02091-8.
105. Agarwal R, Filippatos G, Pitt B, et al. Cardiovascular and kidney outcomes with finerenone in patients with type 2 diabetes and chronic kidney disease: the FIDELITY pooled analysis. Eur Heart J. 2022;43:474-84. doi:10.1093/eurheartj/ehab777.
106. Apperloo EM, Neuen BL, Fletcher RA, et al. Efficacy and safety of SGLT2 inhibitors with and without glucagon-like peptide 1 receptor agonists: a SMART-C collaborative meta-analysis of randomised controlled trials. Lancet Diabetes Endocrinol. 2024;12:545-57. doi:10.1016/S2213-8587(24)00155-4.
107. Neuen BL, Oshima M, Agarwal R, et al. Sodium-glucose cotransporter 2 inhibitors and risk of hyperkalemia in people with type 2 diabetes: a meta-analysis of individual participant data from randomized, controlled trials. Circulation. 2022;145:1460-70. doi:10.1161/CIRCULATIONAHA.121.057736.
108. Tuttle KR, Hauske SJ, Canziani ME, et al. Efficacy and safety of aldosterone synthase inhibition with and without empagliflozin for chronic kidney disease: a randomised, controlled, phase 2 trial. Lancet. 2024;403:379-90. doi:10.1016/S0140-6736(23)02408-X.
109. Malik ME, Falkentoft AC, Jensen J, et al. Discontinuation and reinitiation of SGLT-2 inhibitors and GLP-1R agonists in patients with type 2 diabetes: a nationwide study from 2013 to 2021. Lancet Reg Health Eur. 2023;29:100617. doi:10.1016/j.lanepe.2023.100617.
110. The EMPA-KIDNEY Collaborative Group; Herrington WG, Staplin N, Agrawal N, et al. Long-term effects of empagliflozin in patients with chronic kidney disease. N Engl J Med. 2025;392:777-87. doi:10.1056/NEJMoa2409183.
111. Rangaswami J, Tuttle K, Vaduganathan M. Cardio-renal-metabolic care models: toward achieving effective interdisciplinary care. Circ Cardiovasc Qual Outcomes. 2020;13:e007264. doi:10.1161/CIRCOUTCOMES.120.007264.
112. Yang H, Yu B, Yang P, et al. Machine learning aided risk prediction for metabolic syndrome based on 3 years study. Scientifc Reports. 2022;12:2248. doi:10.1038/s41598-022-06235-2.
113. Tavares L, Manoel A, Donato HR, et al. Prediction of metabolic syndrome: a machine learning approach to help primary prevention. Diabetes Res Clin Pract. 2022;191:110047. doi:10.1016/j.diabres.2022.110047.
114. Clarós A, Ciudin A, Muria J, et al. A model based on artificial intelligence for the prediction, prevention and patient-centred approach for non-communicable diseases related to metabolic syndrome. Eur J Public Health. 2025;35(4):642-9. doi:10.1093/eurpub/ckaf098.
115. Oh YJ, Zhang J, Fang ML, et al. A systematic review of artifcial intelligence chatbots for promoting physical activity, healthy diet, and weight loss. Int J Behav Nutr Phys Act. 2021;18(1):160. doi:10.1186/s12966-021-01224-6.
116. Bays HE, Fitch A, Cuda S, et al. Artifcial intelligence and obesity management: An Obesity Medicine Association (OMA) Clinical Practice Statement (CPS) 2023. Obesity Pillars. 2023;20:100065. doi:10.1016/j.obpill.2023.100065.