1. Cruz JA, Wishart DS. Applications of machine learning in cancer prediction and prognosis. Cancer Inform. 2007;2:59-77.
2. Jia Z, Chen J, Xu X, et al. The importance of resource awareness in artificial intelligence for healthcare. Nat Mach Intell. 2023; 5(7):687-98.
3. Cunningham P, Cord M, Delany SJ. Supervised Learning. In: Cord M, Cunningham P, editors. Machine Learning Techniques for Multimedia: Case Studies on Organization and Retrieval [Internet]. Berlin, Heidelberg: Springer; 2008 p. 21-49. doi:10.1007/978-3-540-75171-7_2.
4. Naik N, Rallapalli Y, Krishna M, et al. Demystifying the Advancements of Big Data Analytics in Medical Diagnosis: An Overview. Eng Sci. 2021;19(2):42-58.
5. Scott I, Carter S, Coiera E. Clinician checklist for assessing suitability of machine learning applications in healthcare: BMJ Health & Care Informatics 2021;28:e100251. doi:10.1136/bmjhci-2020-100251.
6. Orynbaeva AS, Shindaliyev NT, Abdikadyr ZN. Possibilities of Using Machine Learning Algorithms in Medical Data Processing: Manual for Students. Astana Aktaulova’s LLP; 2024. 190 p.
7. Gui C, Chan V. Machine learning in medicine. Univ West Ont Med J. 2017;86(2):76-8.
8. Habehh H, Gohel S. Machine Learning in Healthcare. Curr Genomics. 2021;22(4):291-300.
9. Dhillon A, Singh A. Machine learning in healthcare data analysis: a survey. J Biol Today’s World. 2019;8(6):1-10.
10. Ghassemi M, Naumann T, Schulam P, et al. A Review of Challenges and Opportunities in Machine Learning for Health. AMIA Summits Transl Sci Proc. 2020;2020:191-200.
11. Nayyar A, Gadhavi L, Zaman N. Chapter 2 — Machine learning in healthcare: review, opportunities and challenges. In: Machine learning in healthcare: review, opportunities and challenges. 2021;23-45. doi:10.1016/B978-0-12-821229-5.00011-2.
12. Bi WL, Hosny A, Schabath MB, et al. Artificial intelligence in cancer imaging: Clinical challenges and applications. CA Cancer J Clin. 2019;69(2):127-57.
13. Magoulas GD, Prentza A. Machine learning in medical applications. In: Advanced course on artificial intelligence. Springer; 1999. p. 300-7.
14. Sendak MP, D’Arcy J, Kashyap S, et al. A Path for Translation of Machine Learning Products into Healthcare Delivery. EMJ Innov. 2020. doi:10.33590/emjinnov/19-00172.
15. Deo RC. Machine Learning in Medicine. Circulation. 2015;132(20): 1920-30.
16. Zamzam AH, Abdul Wahab AK, Azizan MM, et al. A Systematic Review of Medical Equipment Reliability Assessment in Improving the Quality of Healthcare Services. Front Public Health. 2021;9:753951.
17. Cajal B, Jiménez R, Gervilla E, Montaño JJ. Doing a Systematic Review in Health Sciences. Clin Health. 2020;31(2):77-83.
18. Goodacre R, Broadhurst D, Smilde AK, et al. Proposed minimum reporting standards for data analysis in metabolomics. Metabolomics. 2007;3(3):231-41.
19. Montgomery DC, Peck EA, Vining GG. Introduction to Linear Regression Analysis. 5th edition. Hoboken, NJ: John Wiley & Sons Inc; 2012. 645 p.
20. Rajkomar A, Dean J, Kohane I. Machine Learning in Medicine. N Engl J Med. 2019;380(14):1347-58.
21. van Breugel M, Fehrmann RSN, Bügel M, et al. Current state and prospects of artificial intelligence in allergy. Allergy. 2023; 78(10):2623-43.
22. Khan M, Banerjee S, Muskawad S, et al. The Impact of Artificial Intelligence on Allergy Diagnosis and Treatment. Curr Allergy Asthma Rep. 2024;24(7):361-72.
23. Breiteneder H, Diamant Z, Eiwegger T, et al. Future research trends in understanding the mechanisms underlying allergic diseases for improved patient care. Allergy. 2019;74(12):2293-311.
24. Rabe KF, Adachi M, Lai CKW, et al. Worldwide severity and control of asthma in children and adults: The global asthma insights and reality surveys. J Allergy Clin Immunol. 2004;114(1):40-7.