Статья
Актуальность. Ишемический инсульт (ИИ) у пациентов с сахарным диабетом 2-го (СД 2) типа характеризуется более тяжелым течением и худшими по сравнению с лицами без диабета функциональными исходами, что повышает количество инвалидизированных к окончанию госпитализации пациентов. Прогнозирование исхода инсульта при поступлении пациента в стационар может помочь в оптимизации лечебно-диагностических и реабилитационных мероприятий и улучшить качество его лечения. Использование лабораторных биомаркеров (ЛБМ) в прогнозировании исхода ИИ является перспективным направлением современной медицины. Цель исследования — создать прогностическую модель исхода нелакунарного ИИ (НлИИ) у пациентов с СД 2-го типа на основании исследования ЛБМ. Материалы и методы. Исследованы концентрации 78 ЛБМ в сыворотке крови 55 выживших к окончанию госпитализации пациентов с НлИИ и СД 2-го типа. С помощью машинного обучения (МО) выполнен поиск взаимосвязи уровней ЛБМ при поступлении в стационар с исходами острого периода ИИ. Результаты. Выявлены пороговые концентрации интерлейкина (IL)-13 (3,605 пг/мл), IL-6 (1,47 пг/мл), аполипопротеина СII (1516000000,0 нг/мл), растворимого рецептора IL-4 (581,912 пг/мл) и синдекана 4 (26,785 нг/мл), определяющие функциональный исход ИИ, а также пороговые значения субъединицы альфа растворимого рецептора IL-2 (480,802 пг/мл), IL-21 (1,024 пг/мл), белка 15, содержащего домен дезинтегрина и металлопротеиназы (3076,733 пг/мл), растворимого рецептора фактора роста эндотелия сосудов 2 (16300,003 пг/мл), определяющие неврологический исход ИИ у пациентов c СД 2-го типа. Предложены модели прогнозирования функционального и неврологического исхода ИИ у пациентов с СД 2-го типа. Заключение. Исследование ЛБМ может являться полезным вспомогательным инструментом прогнозирования исходов НлИИ у пациентов с СД 2-го типа, что создает потенциальные возможности для реализации персонализированного подхода к ведению таких пациентов и улучшения качества их лечения.
1. Institute for Health Metrics and Evaluation (IHME). Global Burden of Disease 2021: Findings from the GBD 2021 Study. [Internet]. Seattle, WA: IHME, 2024 [cited 2024 May 16]. Available from: https://www.healthdata.org/research-analysis/diseases-injuries-risks/factsheets/2021-stroke-level-3-disease
2. Martin S, Aday A, Almarzooq Z, Anderson C, Arora P, Avery C, et al. American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee. 2024 Heart Disease and Stroke Statistics: A Report of US and Global Data From the American Heart Association. Circulation. 2024;149(19): e1164. https://doi.org/10.1161/CIR.0000000000001247
3. Zhang L, Li X, Wolfe C, O’Connell M, Wang Y. Diabetes as an independent risk factor for stroke recurrence in ischemic stroke patients: an updated meta-a nalysis. Neuroepidemiology. 2021;55(6):427–435. https://doi.org/10.1159/000519327
4. Echouffo-Tcheugui J, Xu H, Matsouaka R, Xian Y, Schwamm L, Smith E, et al. Diabetes and long-term outcomes of ischaemic stroke: findings from Get With The Guidelines-S troke. Eur Heart J. 2018;39(25):2376–2386. https://doi.org/10.1093/eurheartj/ehy036
5. Masrur S, Cox M, Bhatt D, Smith E, Ellrodt G, Fonarow G, et al. Association of acute and chronic hyperglycemia with acute ischemic stroke outcomes post-thrombolysis: findings from get with the guidelines-s troke. J Am Heart Assoc. 2015;4(10): e002193. https://doi.org/10.1161/JAHA.115.002193
6. Chaturvedi P, Singh A, Tiwari V, Thacker A. Diabetes mellitus type 2 impedes functional recovery, neuroplasticity and quality of life after stroke. J Family Med Prim Care. 2020;9(2):1035–1041. https://doi.org/10.4103/jfmpc.jfmpc_884_19
7. Hsieh M, Hsieh C, Yang T, Sung S, Hsieh Y, Lee C, et al. Associations of diabetes status and glucose measures with outcomes after endovascular therapy in patients with acute ischemic stroke: an analysis of the nationwide TREAT-AIS registry. Front Neurol. 2024;15:1351150. https://doi.org/10.3389/fneur.2024.1351150
8. Lai Y, Hanneman S, Casarez R, Wang J, McCullough L. Blood biomarkers for physical recovery in ischemic stroke: a systematic review. Am J Transl Res. 2019;11(8):4603–4613.
9. Fast L, Temuulen U, Villringer K, Kufner A, Ali H, Siebert E, et al. Machine learning-b ased prediction of clinical outcomes after first-ever ischemic stroke. Front Neurol. 2023;14:1114360. https://doi.org/10.3389/fneur.2023.1114360
10. Cui Y, Wang X, Zhao Y, Chen S, Sheng B, Wang L, et al. Association of serum biomarkers with early neurologic improvement after intravenous thrombolysis in ischemic stroke. PLOS One. 2022;17(10):e0277020. https://doi.org/10.1371/journal.pone.0277020
11. Kamtchum-Tatuene J, Jickling G. Blood biomarkers for stroke diagnosis and management. Neuromolecular Med. 2019;21(4):344–368. https://doi.org/10.1007/s12017-019-08530-0
12. Lehmann A, Alfieri D, de Araújo M, Trevisani E, Nagao M, Pesente F, et al. Immune-inflammatory, coagulation, adhesion, and imaging biomarkers combined in machine learning models improve the prediction of death 1 year after ischemic stroke. Clin Exp Med. 2022;22(1):111–123. https://doi.org/10.1007/s10238-021-00732-w
13. R Core Team. (2024). R: a language and environment for statistical computing (4.3.3). R Foundation for Statistical Computing [Internet]. Available from: https://www.r-project.org/
14. Van Rossum G, Drake F. Python 3 reference manual. CreateSpace, Scotts Valley, CA. 2009.
15. Stekhoven D, Bühlmann P. MissForest-non-parametric missing value imputation for mixed-type data. Bioinformatics. 2012;28(1):112–8. https://doi.org/10.1093/bioinformatics/btr597
16. Gkantzios A, Kokkotis C, Tsiptsios D, Moustakidis S, Gkartzonika E, Avramidis T, et al. Evaluation of blood biomarkers and parameters for the prediction of stroke survivors’ functional outcome upon discharge utilizing explainable machine learning. Diagnostics (Basel). 2023;13(3):532. https://doi.org/10.3390/diagnostics13030532
17. Peng D, Liu Y, Chen W, Hu H, Luo Y. Epidermal growth factor alleviates cerebral ischemia-induced brain injury by regulating expression of neutrophil gelatinase-associated lipocalin. Biochem Biophys Res Commun. 2020;524(4):963–969. https://doi.org/10.1016/j.bbrc.2020.02.025
18. Geiseler S, Morland C. The Janus face of VEGF in stroke. Int J Mol Sci. 2018;19(5):1362. https://doi.org/10.3390/ijms19051362
19. Bogoslovsky T, Chaudhry A, Latour L, Maric D, Luby M, Spatz M, et al. Endothelial progenitor cells correlate with lesion volume and growth in acute stroke. Neurology. 2010;75(23):2059–62. https://doi.org/10.1212/WNL.0b013e318200d741
20. Camps-Renom P, Jiménez-Xarrié E, Soler M, Puig N, Aguilera-Simón A, Marín R, et al. Endothelial progenitor cells count after acute ischemic stroke predicts functional outcome in patients with carotid atherosclerosis. J Stroke Cerebrovasc Dis. 2021;30(12):106144. https://doi.org/10.1016/j.jstrokecerebrovasdis.2021.106144
21. Decano J, Moran A, Giordano N, Ruiz-Opazo N, Herrera V. Analysis of CD45- [CD34+/KDR+] endothelial progenitor cells as juvenile protective factors in a rat model of ischemic-hemorrhagic stroke. PLOS One. 2013;8(1):e55222. https://doi.org/10.1371/journal.pone.0055222
22. Hu Y, Huang S, Shen T, Wang R, Geng M, Wang Y, et al. Prognostic significance of plasma VEGFA and VEGFR2 in acute ischemic stroke — a prospective cohort study. Mol Neurobiol. 2024;61(9):6341–6353. https://doi.org/10.1007/s12035-024-03973-4
23. Silbernagel G, Genser B, Drechsler C, Scharnagl H, Grammer T, Stojakovic T, et al. HDL cholesterol, apolipoproteins, and cardiovascular risk in hemodialysis patients. J Am Soc Nephrol. 2015;26(2):484–92. https://doi.org/10.1681/ASN.2013080816
24. Molgora M, Supino D, Mantovani A, Garlanda C. Tuning inflammation and immunity by the negative regulators IL-1R2 and IL-1R8. Immunol Rev. 2018;281(1):233–247. https://doi.org/10.1111/imr.12609
25. Zhu H, Hu S, Li Y, Sun Y, Xiong X, Hu X, et al. Interleukins and ischemic stroke. Front. Immunol. 2022;13:828447. https://doi.org/10.3389/fimmu.2022.828447
26. Bell E, Larson N, Decker P, Pankow J, Tsai M, Hanson N, et al. Hepatocyte growth factor is positively associated with risk of stroke: The MESA (Multi-E thnic Study of Atherosclerosis). Stroke. 2016;47(11):2689–2694. https://doi.org/10.1161/STROKEAHA.116.014172
27. Zhu Z, Xu T, Guo D, Huangfu X, Zhong C, Yang J, et al. Serum hepatocyte growth factor is probably associated with 3-month prognosis of acute ischemic stroke. Stroke. 2018;49(2):377–383. https://doi.org/10.1161/STROKEAHA.117.019476
28. Lipphardt M, Song J, Ratliff B, Dihazi H, Müller G, Goligorsky M. Endothelial dysfunction is a superinducer of syndecan-4: fibrogenic role of its ectodomain. Am J Physiol Heart Circ Physiol. 2018;314(3):H484–H496. https://doi.org/10.1152/ajpheart.00548.2017
29. Yoshimoto T, Saito S, Omae K, Hattori Y, Fukuma K, Kitamura K, et al. Study protocol for a randomized, double-blind, placebo-c ontrolled, phase-II trial: AdrenoMedullin for ischemic stroke study. J Stroke Cerebrovasc Dis. 2021;30(6):105761. https://doi.org/10.1016/j.jstrokecerebrovasdis.2021.105761
30. Wu C, Borné Y, Gao R, López Rodriguez M, Roell W, Wilson J, et al. Elevated circulating follistatin associates with an increased risk of type 2 diabetes. Nat Commun. 2021;12(1):6486. https://doi.org/10.1038/s41467-021-26536-w
31. Wong R, Lénárt N, Hill L, Toms L, Coutts G, Martinecz B, et al. Interleukin-1 mediates ischaemic brain injury via distinct actions on endothelial cells and cholinergic neurons. Brain Behav. Immun. 2019;76:126–138. https://doi.org/10.1016/j.bbi.2018.11.012
32. Zhou P. Emerging mechanisms and applications of lowdose IL-2 therapy in autoimmunity. Cytokine Growth Factor Rev. 2022;67: 80–88. https://doi.org/10.1016/j.cytogfr.2022.06.003
33. Damoiseaux J. The IL-2 — IL-2 receptor pathway in health and disease: The role of the soluble IL-2 receptor. Clin Immunol. 2020;218:108515. https://doi.org/10.1016/j.clim.2020.108515
34. Huang X, Ye Q, Zhu Z, Chen W, Chen Y, Li J, et al. Polymorphism of IL6 receptor gene is associated with ischaemic stroke in patients with metabolic syndrome. Brain Res. 2020;1728:146594. https://doi.org/10.1016/j.brainres.2019.146594
35. Chen A, Fang Z, Chen X, Yang S, Zhou Y, Mao L, et al. Microglia-derived TNF-α mediates endothelial necroptosis aggravating blood brain-b arrier disruption after ischemic stroke. Cell Death Dis. 2019;10(7):487. https://doi.org/10.1038/s41419-019-1716-9
36. Gao X, Zhang Z, Han G. MiR-29a-3p enhances the viability of rat neuronal cells that injured by oxygen-g lucose deprivation/ reoxygenation treatment through targeting TNFRSF1A and regulating NF-κB signaling pathway. J Stroke Cerebrovasc Dis. 2020;29(11):105210. https://doi.org/10.1016/j.jstrokecerebrovasdis.2020.105210
37. Hansen R, Laursen C, Nawaz N, Madsen J, Nielsen H, Kruuse C, et al. Leukocyte TNFR1 and TNFR2 expression contributes to the peripheral immune response in cases with ischemic stroke. Cells. 2021;10(4):861. https://doi.org/10.3390/cells10040861
38. Xue Y, Zeng X, Tu W, Zhao J. Tumor necrosis factor-α: the next marker of stroke. Dis Markers. 2022;2022:2395269. https://doi.org/10.1155/2022/2395269
39. Chu M, Wen L, Jiang D, Liu L, Nan H, Yue A, et al. Peripheral inflammation in behavioural variant frontotemporal dementia: associations with central degeneration and clinical measures. J Neuroinflammation. 2023;20(1):65. https://doi.org/10.1186/s12974-023-02746-5
40. Fan Q, Zhou J, Wang Y, Xi T, Ma H, Wang Z, Xiao W, Liu Q. Chip-based serum proteomics approach to reveal the potential protein markers in the sub-acute stroke patients receiving the treatment of Ginkgo Diterpene Lactone Meglumine Injection. J Ethnopharmacol. 2020;260:112964. https://doi.org/10.1016/j.jep.2020.112964
41. Alrafiah A, Alofi E, Almohaya Y, Hamami A, Qadah T, Almaghrabi S, et al. Angiogenesis biomarkers in ischemic stroke patients. J Inflamm Res. 2021 Sep 22;14:4893–4900. https://doi.org/10.2147/JIR.S331868
42. Melincovici C, Boşca A, Şuşman S, Mărginean M, Mihu C, Istrate M, et al. Vascular endothelial growth factor (VEGF) — key factor in normal and pathological angiogenesis. Rom J Morphol Embryol. 2018;59(2):455–467.
43. Esposito E, Ahn B, Shi J, Nakamura Y, Park J, Mandeville E, et al. Brain-to-cervical lymph node signaling after stroke. Nat Commun. 2019;10(1):5306. https://doi.org/10.1038/s41467-019-13324-w
44. Yanev P, Poinsatte K, Hominick D, Khurana N, Zuurbier K, Berndt M, et al. Impaired meningeal lymphatic vessel development worsens stroke outcome. J Cereb Blood Flow Metab. 2020;40(2):263–275. https://doi.org/10.1177/0271678X18822921
45. Tang H, Zhang Z, Li Z, Lin J, Fang D. Association of leptin receptor gene polymorphisms with genetic susceptibility to ischemic stroke. J Stroke Cerebrovasc Dis. 2015;24(9):2128–33. https://doi.org/10.1016/j.jstrokecerebrovasdis.2015.05.036
46. Abd El-A ziz T, Mohamed R, Mohamed R, Pasha H. Leptin, leptin gene and leptin receptor gene polymorphism in heart failure with preserved ejection fraction. Heart Vessels. 2012;27(3):271–9. https://doi.org/10.1007/s00380-011-0152-2
47. Bruno A, Conus S, Schmid I, Simon H. Apoptotic pathways are inhibited by leptin receptor activation in neutrophils. J Immunol. 2005;174(12):8090–6. https://doi.org/10.4049/jimmunol.174.12.8090
48. Tan Z, Qin S, Yuan Y, Hu X, Huang X, Liu H, et al. NOTCH1 signaling regulates the latent neurogenic program in adult reactive astrocytes after spinal cord injury. Theranostics. 2022;12(10):4548–4563. https://doi.org/10.7150/thno.71378
49. Tanigaki K, Nogaki F, Takahashi J, Tashiro K, Kurooka H, Honjo T. Notch1 and Notch3 instructively restrict bFGF-responsive multipotent neural progenitor cells to an astroglial fate. Neuron. 2001;29(1):45–55. https://doi.org/10.1016/s0896-6273(01)00179-9
50. Yoon H, Triplet E, Simon W, Choi C, Kleppe L, De Vita E, et al. Blocking Kallikrein 6 promotes developmental myelination. Glia. 2022;70(3):430–450. https://doi.org/10.1002/glia.24100
51. Patra K, Soosaipillai A, Sando S, Lauridsen C, Berge G, Møller I, et al. Assessment of kallikrein 6 as a cross-sectional and longitudinal biomarker for Alzheimer’s disease. Alzheimers Res Ther. 2018;10(1):9. https://doi.org/10.1186/s13195-018-0336-4
52. Chen G, Lin T, Wu M, Cai G, Wu C, Ding Q, et al. Causal association of cytokines and growth factors with stroke and its subtypes: a mendelian randomization study. Mol Neurobiol. 2024;61(6):3212–3222. https://doi.org/10.1007/s12035-023-03752-7
53. Chen D, Li J, Huang Y, Wei P, Miao W, Yang Y, et al. Interleukin 13 promotes long-term recovery after ischemic stroke by inhibiting the activation of STAT3. J Neuroinflammation. 2022;19(1):112. https://doi.org/10.1186/s12974-022-02471-5
54. Kolosowska N, Keuters M, Wojciechowski S, Keksa-Goldsteine V, Laine M, Malm T, et al. Peripheral administration of IL-13 induces anti-inflammatory microglial/macrophage responses and provides neuroprotection in ischemic stroke. Neurotherapeutics. 2019;16(4):1304–1319. https://doi.org/10.1007/s13311-019-00761-0
55. Li X, Lin S, Chen X, Huang W, Li Q, Zhang H, et al. The prognostic value of serum cytokines in patients with acute ischemic stroke. Aging Dis. 2019;10(3):544–556. https://doi.org/10.14336/AD.2018.0820
56. Wolska A, Dunbar R, Freeman L, Ueda M, Amar M, Sviridov D, et al. Apolipoprotein C–II: new findings related to genetics, biochemistry, and role in triglyceride metabolism. Atherosclerosis. 2017;267:49–60. https://doi.org/10.1016/j.atherosclerosis.2017.10.025
57. Gao M, Yang C, Wang X, Guo M, Yang L, Gao S, et al. ApoC2 deficiency elicits severe hypertriglyceridemia and spontaneous atherosclerosis: a rodent model rescued from neonatal death. Metab. Clin. Exp. 2020;109:154296. https://doi.org/10.1016/j.metabol.2020.154296
58. Rayasam A, Kijak J, Kissel L, Choi Y, Kim T, Hsu M, et al. CXCL13 expressed on inflamed cerebral blood vessels recruit IL-21 producing TFH cells to damage neurons following stroke. J Neuroinflammation. 2022;19(1):125. https://doi.org/10.1186/s12974-022-02490-2
59. Clarkson B, Ling C, Shi Y, Harris M, Rayasam A, Sun D, et al. T cell-derived interleukin (IL)-21 promotes brain injury following stroke in mice. J Exp Med. 2014;211(4):595–604. https://doi.org/10.1084/jem.20131377
60. Aujla P, Hu M, Hartley B, Kranrod J, Viveiros A, Kilic T, et al. Loss of ADAM15 exacerbates transition to decompensated myocardial hypertrophy and dilation through activation of the calcineurin pathway. Hypertension. 2023;80(1):97–110. https://doi.org/10.1161/HYPERTENSIONAHA.122.19411
61. Chute M, Aujla P, Li Y, Jana S, Zhabyeyev P, Rasmuson J, et al. ADAM15 is required for optimal collagen cross-linking and scar formation following myocardial infarction. Matrix Biol. 2022;105:127–143. https://doi.org/10.1016/j.matbio.2021.12.002
62. Hsia H, Tüshaus J, Brummer T, Zheng Y, Scilabra S, Lichtenthaler S. Functions of ‘A disintegrin and metalloproteases (ADAMs)’ in the mammalian nervous system. Cell Mol Life Sci. 2019;76(16):3055–3081. https://doi.org/10.1007/s00018-019-03173-7