1. Бокерия Л.А., Авалиани В.М., Буторин С.П. Венозные трансплантаты и их состоятельность в ближайшем и отдаленном периодах после аортокоронарного шунтирования. Бюллетень НЦССХ им. АН Бакулева РАМН. Сердечно-сосудистые заболевания. 2013;14(5):38-48.
2. De Vries MR, Simons KH, Jukema JW, et al. Vein graft failure: from pathophysiology to clinical outcomes. Nature Reviews Cardiology. 2016;13(8):451-70. doi:10.1038/nrcardio.2016.76.
3. Кубова М.Ч., Булаева Н. И., Рузина Е.В., Голухова Е.З. Факторы риска развития тромбоза шунтов у больных ишемической болезнью сердца в отдаленные сроки после операции коронарного шунтирования. Креативная кардиология. 2021; 15(2):180. doi:10.24022/1997-3187-2021-15-2-180-193.
4. Baganha F, de Jong A, Jukema JW, et al. The role of immunomodulation in vein graft remodeling and failure. Journal of Cardiovascular Translational Research. 2021;14:100-9. doi:10.1007/s12265-020-10001-y.
5. Kosmidou I, Redfors B, Chen S, et al. C-reactive protein and prognosis after percutaneous coronary intervention and bypass graft surgery for left main coronary artery disease: analysis from the EXCEL trial. American heart journal. 2019;210:49-57. doi:10.1016/j.ahj.2018.12.013.
6. Шварц В.А., Талибова С.М., Сокольская М.А. и др. Ассоциация новых биомаркеров системного воспаления с развитием атеросклероза и его выраженностью. Российский кардиологический журнал. 2024;29(8):6025. doi:10.15829/1560-4071-2024-6025.
7. Urbanowicz T, Olasińska-Wiśniewska A, Gładki M, Jemielity M.The Significance of Simple Inflammatory Markers in Off Pump Surgery-Review, Rev. Cardiovasc. Med, 2022;23(12):400. doi:10.31083/j.rcm2312400.
8. Katkenov N, Mukhatayev Z, Kozhakhmetov S, et al. Systematic Review on the Role of IL-6 and IL-1beta in Cardiovascular Diseases. Cardiovasc. Dev. Dis. 2024;11(7):206. doi:10.3390/jcdd11070206.
9. Bonaventura A, Moroni F, Golino M, et al. IL-1 blockade in cardiovascular disease: an appraisal of the evidence across different inflammatory paradigms. Cardiol Angiol. 2024;72(5):477-88. doi:10.23736/S2724-5683.23.06390-1.
10. Potere N, Bonaventura A, Abbate A. Novel Therapeutics and Upcoming Clinical Trials Targeting Inflammation in Cardiovascular Diseases. Arterioscler. Thromb. Vasc. Biol. 2024;44(12):2371-95. doi:10.1161/ATVBAHA.124.319980.
11. Attiq A, Afzal S, Ahmad W, Kandeel M. Hegemony of inflammation in atherosclerosis and coronary artery disease. Eur. J.Pharmacol. 2024;5(966):176338. doi:10.1016/j.ejphar.2024.176338.
12. Бокерия Л.А., Пурсанов М.Г., Петросян К.В. и др. Интраоперационная шунтография: оптимальный метод оценки проходимости коронарных шунтов и дальнейшего улучшения результатов хирургической реваскуляризации миокарда. Грудная и сердечно-сосудистая хирургия. 2018;60(3):233-41. doi:10.24022/0236-2791-2018-60-3233-241.
13. Сигаев И. Ю., Керен М. А., Шония З. Д. Возможности ультразвуковой флоуметрии в сочетании с эпикардиальным ультразвуковым сканированием для комплексной оценки функционального состояния кондуитов при операциях коронарного шунтирования. Грудная и сердечно-сосудистая хирургия. 2021;63(2):133-9. doi:10.24022/0236-2791-2021-63-2-133-139.
14. Xenogiannis I, Zenati M, Bhatt DL, et al. Saphenous vein graft failure: from pathophysiology to prevention and treatment strategies. Circulation. 2021;144(9):728-45. doi:10.1161/CIRCULATIONAHA.120.052163.
15. Kršek A, Batičic L, urko-Cofek BC, et al. Insights into the Molecular Mechanism of Endothelial Glycocalyx Dysfunction during Heart Surgery. Curr. Issues Mol. Biol. 2024;46: 3794-809. doi:10.3390/cimb46050236.
16. Guida GA, Angelini GD. Pathophysiology and mechanisms of saphenous vein graft failure. Brazilian journal of cardiovascular surgery. 2022;37(spe1):32-7. doi:10.21470/1678-9741-2022-0133.
17. Wadey K, Lopes J, Bendeck M, George S.Role of smooth muscle cells in coronary artery bypass grafting failure. Cardiovascular research. 2018;114(4):601-10. doi:10.1093/cvr/cvy021.
18. Ирасханов А.Ш., Бузиашвили Ю.И., Кокшенева И.В. и др. Значение медиаторов воспалительной реакции в механизмах атерогенеза и их влияние на результаты реваскуляризации миокарда у больных ишемической болезнью сердца. Креативная кардиология. 2023;17(3):330-40. doi:10.24022/1997-3187-2023-17-3-330-340.
19. Aydın C, Engin M. The value of inflammation indexes in predicting patency of saphenous vein grafts in patients with coronary artery bypass graft surgery. Cureus. 2021;13(7). doi:10.7759%2Fcureus.16646.
20. Bazan JF, Bacon KB, Hardiman G, et al. A new class of membrane-bound chemokine with a CX3C motif. Nature. 1997;385(6617):640-4. doi:10.1038/385640a0.
21. Loh SX, Ekinci Y, Spray L, et al. Fractalkine signalling (CX3CL1/CX3CR1 axis) as an emerging target in coronary artery disease. Journal of Clinical Medicine, 2023;12(14): 4821. doi:10.3390/jcm12144821.
22. Szukiewicz D. CX3CL1 (Fractalkine)-CX3CR1 Axis in Inflammation-Induced Angiogenesis and Tumorigenesis. International journal of molecular sciences. 2024;25(9):4679. doi:10.3390/ijms25094679.
23. Zhuang Q, Ou J, Zhang S, Ming Y. Crosstalk between the CX3CL1/CX3CR1 axis and inflammatory signaling pathways in tissue injury. Current Protein and Peptide Science. 2019;20(8):844-54. doi:10.2174/1389203720666190305165722.
24. Flierl U, Bauersachs J, Schäfer A. Modulation of platelet and monocyte function by the chemokine fractalkine (CX3CL1) in cardiovascular disease. European Journal of Clinical Investigation. 2015;45(6):624-33. doi:10.1111/eci.12443.
25. Stangret A, Sadowski KA, Jabłoński K, et al. Chemokine Fractalkine and Non-Obstructive Coronary Artery Disease — Is There a Link? International Journal of Molecular Sciences. 2024;25(7):3885. doi:10.3390/ijms25073885.
26. Boag SE, Das R, Shmeleva EV, et al. T lymphocytes and fractalkine contribute to myocardial ischemia/reperfusion injury in patients. The Journal of clinical investigation. 2015;125(8):3063-76. doi:10.1172/JCI80055.
27. Li J, Guo Y, Luan X, et al. Independent roles of monocyte chemoattractant protein-1, regulated on activation, normal T-cell expressed and secreted and fractalkine in the vulnerability of coronary atherosclerotic plaques. Circulation Journal. 2012;76(9): 2167-73. doi:10.1253/circj.cj-11-1457.
28. Yao K, Zhang S, Lu H, et al. Changes in fractalkine in patients with ST-elevation myocardial infarction. Coronary Artery Disease. 2015;26(6):516-20. doi:10.1097/MCA.00000000000000273.
29. Mai W, Liao Y. Targeting IL-1β in the Treatment of Atherosclerosis. Frontiers in immunology. 2020;11:589654. doi:10.3389/fimmu.2020.589654.
30. Catană MG, Popențiu IA, Văleanu M, et al. IL-1 Beta — A Biomarker for Ischemic Stroke Prognosis and Atherosclerotic Lesions of the Internal Carotid Artery. Medicina. 2023; 59(10):1790. doi:10.3390/medicina59101790.
31. Olofsson Peder S, Yuri S, Ken J, et al. A functional interleukin-1 receptor antagonist polymorphism influences atherosclerosis development — the interleukin-1β: interleukin-1 receptor antagonist balance in atherosclerosis. Circulation Journal. 2009;73(8): 1531-6. doi:10.1253/circj.cj-08-1150.
32. Kidder E, Pea M, Cheng S, et al. The interleukin-1 receptor type-1 in disturbed flowinduced endothelial mesenchymal activation. Frontiers in Cardiovascular Medicine. 2023;10:1190460. doi:10.3389/fcvm.2023.1190460.
33. Libby P. Interleukin-1 beta as a target for atherosclerosis therapy: biological basis of CANTOS and beyond. Journal of the American College of Cardiology. 2017;70(18): 2278-89. doi:10.1016/j.jacc.2017.09.028.
34. Mohammadnia N, Opstal TSJ, El Messaoudi S, et al. An Update on Inflammation in Atherosclerosis: How to Effectively Treat Residual Risk. Clin. Ther. 2023;45(11):1055-9. doi:10.1016/j.clinthera.2023.08.016.
35. Gusev E, Sarapultsev A. Atherosclerosis and Inflammation: Insights from the Theory of General Pathological Processes. Int. J.Mol. Sci. 2023;24:7910. doi:10.3390/ijms24097910.
36. Kotlyarov S.Immune Function of Endothelial Cells: Evolutionary Aspects, Molecular Biology and Role in Atherogenesis. Int. J.Mol. Sci. 2022;23(17):9770. doi:10.3390/ijms23179770.
37. Wan RH, Yuan Y, Hao W, et al. Relationship between serum neopterin level and peripheral arterial plaque in patients with type 2 diabetes. Diabetes, Metabolic Syndrome and Obesity. 2021;2871-8. doi:10.2147/DMSO.S315986.
38. Ünüvar S, Tanrıverdi Z, Aslanhan H. Potential prognostic role of immune system activation marker neopterin in patients with type 2 diabetes. Journal of Medical Biochemistry. 2018;37(4):465. doi:10.2478%2Fjomb-2018-0004.
39. De Rosa S, Cirillo P, Pacileo M, et al. Neopterin: from forgotten biomarker to leading actor in cardiovascular pathophysiology. Current vascular pharmacology. 2011;9(2):188-99. doi:10.2174/157016111794519372.
40. Fuchs D, Avanzas P, Arroyo-Espliguero R, et al. The role of neopterin in atherogenesis and cardiovascular risk assessment. Current medicinal chemistry. 2009;16(35):4644-53. doi:10.2174/092986709789878247.
41. Bjørnestad EØ, Borsholm RA, Svingen GF, et al. Neopterin as an effect modifier of the cardiovascular risk predicted by Total homocysteine: A prospective 2‐cohort study. Journal of the American heart association. 2017;6(11):e006500. doi:10.1161/JAHA.117.006500.
42. Kember I, Sanajou S, Kilicarslan B, et al. Evaluation of neopterin levels and kynurenine pathway in patients with acute coronary syndrome. Acute and Critical Care. 2023;38(3):325. doi:10.4266%2Facc.2023.00024.
43. Nazer B, Ray KK, Sloan S, et al. Prognostic utility of neopterin and risk of heart failure hospitalization after an acute coronary syndrome. European heart journal. 2011;32(11):1390-7. doi:10.1093/eurheartj/ehr032.
44. Zouridakis E, Avanzas P, Arroyo-Espliguero R, et al. Markers of inflammation and rapid coronary artery disease progression in patients with stable angina pectoris. Circulation. 2004;110(13):1747-53. doi:10.1161/01.CIR.0000142664.18739.92.
45. Vengen IT, Dale AC, Wiseth R, et al. Neopterin predicts the risk for fatal ischemic heart disease in type 2 diabetes mellitus: long-term follow-up of the HUNT 1 study. Atherosclerosis. 2009;207(1):239-44. doi:10.1016/j.atherosclerosis.2009.04.003.