1. Fang G., Sapru S., Behera S., Yao J., Shao Z., Kundu S.C., Chen X. Exploration of the tight structural-mechanical relationship in mulberry and non-mulberry silkworm silks. J Mater Chem B. 2016; 4(24):4337-4347. doi:10.1039/c6tb01049k.
2. Sun W., Gregory D.A., Tomeh M.A., Zhao X. Silk Fibroin as a Functional Biomaterial for Tissue Engineering. Int J Mol Sci. 2021; 22(3):1499. doi:10.3390/ijms22031499.
3. Holland C., Numata K., Rnjak-Kovacina J., Seib F.P. The Biomedical Use of Silk: Past, Present, Future. Adv Healthc Mater. 2019; 8(1):e1800465. doi:10.1002/adhm.201800465.
4. Cheng G., Davoudi Z., Xing X., Yu X., Cheng X., Li Z., Deng H., Wang Q. Advanced Silk Fibroin Biomaterials for Cartilage Regeneration. ACS Biomater Sci Eng. 2018;4(8):2704-2715. doi:10.1021/acsbiomaterials.8b00150.
5. Sahu N., Pal S., Sapru S., Kundu J., Talukdar S., Singh N.I., Yao J., Kundu S.C. Non-Mulberry and Mulberry Silk Protein Sericins as Potential Media Supplement for Animal Cell Culture. Biomed Res Int. 2016; 2016:7461041. doi:10.1155/2016/7461041.
6. Rockwood D.N., Preda R.C., Yücel T., Wang X., Lovett M.L., Kaplan D.L. Materials fabrication from Bombyx mori silk fibroin. Nat Protoc. 2011; 22;6(10):1612-31.
7. doi:10.1038/nprot.2011.379.
8. Food and Agriculture Organization of the Unied nations [internet]. Available at: http://fao.org (accessed 15.10.2023).
9. Qi Y., Wang H., Wei K., Yang Y., Zheng R.Y., Kim I.S., Zhang K.Q. A Review of Structure Construction of Silk Fibroin Biomaterials from Single Structures to Multi-Level Structures. Int J Mol Sci. 2017;18(3):237. doi:10.3390/ijms18030237.
10. Inoue S., Tanaka K., Arisaka F., Kimura S., Ohtomo K., Mizuno S. Silk fibroin of Bombyx mori is secreted, assembling a high molecular mass elementary unit consisting of H-chain, L-chain, and P25, with a 6:6:1 molar ratio. J Biol Chem. 2000;275(51):40517-28. doi:10.1074/jbc.M006897200.
11. Melke J., Midha S., Ghosh S., Ito K., Hofmann S. Silk fibroin as biomaterial for bone tissue engineering. Acta Biomater. 2016;31:1-16. doi:10.1016/j.actbio.2015.09.005.
12. Антонова Л.В., Кривкина Е.О., Резвова М.А., Севостьянова В.В., Миронов А.В., Глушкова Т.В., Клышников К.Ю., Овчаренко Е.А., Кудрявцева Ю.А., Барбараш Л.С. Биодеградируемый сосудистый протез с армирующим внешним каркасом. Комплексные проблемы сердечно-сосудистых заболеваний. 2019;8(2):87-97. doi:10.17802/2306-1278-2019-8-2-87-97.
13. Durán-Rey D., Brito-Pereira R., Ribeiro C., Ribeiro S., Sánchez-Margallo J.A., Crisóstomo V., Irastorza I., Silván U., Lanceros-Méndez S., Sánchez-Margallo F.M. Development of Silk Fibroin Scaffolds for Vascular Repair. Biomacromolecules. 2023;24(3):1121-1130. doi:10.1021/acs.biomac.2c01124.
14. Settembrini A., Buongiovanni G., Settembrini P., Alessandrino A., Freddi G., Vettor G., Martelli E. In-vivo evaluation of silk fibroin small-diameter vascular grafts: state of art of preclinical studies and animal models. Front Surg. 2023;10:1090565. doi: 10.3389/fsurg.2023.1090565.
15. Dingle Y.L., Bonzanni M., Liaudanskaya V., Nieland T.J.F., Kaplan D.L. Integrated functional neuronal network analysis of 3D silk-collagen scaffold-based mouse cortical culture. STAR Protoc. 2021;2(1):100292. doi:10.1016/j.xpro.2020.100292.
16. Chen Y., Yang W., Wang W., Zhang M., Li M. Bombyx mori Silk Fibroin Scaffolds with Antheraea pernyi Silk Fibroin Micro/Nano Fibers for Promoting EA. hy926 Cell Proliferation. Materials (Basel). 2017;10(10):1153. doi:10.3390/ma10101153.
17. Zhao H., Ren X., Zhang Y., Huang L. Influence of self-assembly regenerated silk fibroin nanofibers on the properties of electrospun materials. Biomed Mater Eng. 2015;26(1):S89-94. doi:10.3233/BME-151293.
18. Roblin N.V., DeBari M.K., Shefter S.L., Iizuka E., Abbott R.D. Development of a More Environmentally Friendly Silk Fibroin Scaffold for Soft Tissue Applications. J Funct Biomater. 2023;14(4):230. doi:10.3390/jfb14040230.
19. Furuzono T., Kishida A., Tanaka J.. Nano-scaled hydroxyapatite/polymer composite I. Coating of sintered hydroxyapatite particles on poly(gamma-methacryloxypropyl trimethoxysilane)grafted silk fibroin fibers through chemical bonding. J Mater Sci Mater Med. 2004;15(1):19-23. doi:/10.1023/b:jmsm.0000010093.39298.5a.
20. Patil P.P., Reagan M.R., Bohara R.A. Silk fibroin and silk-based biomaterial derivatives for ideal wound dressings. Int J Biol Macromol. 2020; 164:4613-4627.
21. doi:10.1016/j.ijbiomac.2020.08.041.
22. Bosio V.E., Brown J., Rodriguez M.J., Kaplan D.L. Biodegradable Porous Silk Microtubes for Tissue Vascularization. J Mater Chem B. 2017;5(6):1227-1235.
23. doi:10.1039/C6TB02712A.
24. Aytemiz D., Fukuda Y., Higuchi A., Asano A., Nakazawa C.T., Kameda T., Yoshioka T., Nakazawa Y. Compatibility Evaluation of Non-Woven Sheet Composite of Silk Fibroin and Polyurethane in the Wet State. Polymers (Basel). 2018;10(8):874.
25. doi:10.3390/polym10080874.
26. Wang Y., Blasioli D.J., Kim H.J., Kim H.S., Kaplan D.L. Cartilage tissue engineering with silk scaffolds and human articular chondrocytes. Biomaterials. 2006;27(25):4434-42. do:10.1016/j.biomaterials.2006.03.050.
27. Zhao M., Qi Z., Tao X., Newkirk C., Hu X., Lu S. Chemical, Thermal, Time, and Enzymatic Stability of Silk Materials with Silk I Structure. Int J Mol Sci. 2021;22(8):4136. https://doi:10.3390/ijms22084136.