1. Tsao CW, Lyass A, Enserro D, Larson MG, Ho JE, Kizer JR et al. Temporal Trends in the Incidence of and Mortality Associated with Heart Failure with Preserved and Reduced Ejection Fraction. JACC: Heart Failure. 2018;6(8):678–85. DOI: 10.1016/j.jchf.2018.03.006
2. Виноградова Н.Г., Поляков Д.С., Фомин И.В. Анализ смертности у пациентов с ХСН после декомпенсации при длительном наблюдении в условиях специализированной медицинской помощи и в реальной клинической практике. Кардиология. 2020;60(4):91-100]. DOI: 10.18087/cardio.2020.4.n1014
3. Бойцов С.А., Баланова Ю.А., Шальнова С.А., и др. Артериальная гипертония среди лиц 25-64 лет: распространенность, осведомленность, лечение и контроль по материалам исследования ЭССЕ. Кардиоваскулярная терапия и профилактика. 2014;13(4):4-14]. DOI: 10.15829/1728-8800- 2014-4-4-14
4. Поляков Д.С., Фомин И.В., Беленков Ю.Н., и др. Хроническая сердечная недостаточность в Российской Федерации: что изменилось за 20 лет наблюдения? Результаты исследования ЭПОХА–ХСН. Кардиология. 2021;61(4):4–14]. https://doi.org/10.18087/cardio.2021.4.n1628
5. Курочкина О.Н., Керимова С.Н., Исмаилов З.Б., Ягупова Т.А. Оценка динамики скорости клубочковой фильтрации у пациентов с хронической болезнью почек по данным регионального регистра // Клиническая нефрология. - 2022. - Т. 14. - №2. - C. 9-18]. doi: 10.18565/nephrology.2022.2.9-18.
6. Курочкина О.Н., Баранов А.В., Сажина А.С., Богомолов А.Н. Современные методы лечения пожилых пациентов с хронической сердечной недостаточностью: обзор литературы. Фарматека. 2023;30(1-2):94-99]. doi: 10.18565/pharmateca.2023.1-2.94-99.
7. Курочкина О.Н., Баранов А.В., Сажина А.С., Богомолов А.Н. Возможности организации оказания медицинской помощи пациентам с хронической сердечной недостаточностью в регионах России с низкой плотностью населения. Профилактическая медицина. 2023;26(5):102 109]. https://doi.org/10.17116/profmed202326051102
8. Packer M, Anker SD, Butler J, et al. Cardiovascular and renal outcomes with empagliflozin in heart failure. N Engl J Med. 2020;383:1413–1424. doi: 10.1056/NEJMoa2022190.
9. Bhatt DL, Szarek M, Steg PG, et al. Sotagliflozin in patients with diabetes and recent worsening heart failure. N Engl J Med. 2021;384:117–128. DOI: 10.1056/NEJMoa2030183
10. Anker SD, Butler J, Filippatos G, et al. Empagliflozin in heart failure with a preserved ejection fraction. N Engl J Med. 2021;385:1451–1461. DOI: 10.1056/NEJMoa2107038
11. Solomon SD, McMurray JJV, Claggett B, de Boer RA, DeMets D, Hernandez AF, et al. Dapagliflozin in heart failure with mildly reduced or preserved ejection fraction. N Engl J Med 2022;387:1089–98. https://doi.org/10.1056/NEJMoa2206286
12. Vardeny O, Fang JC, Desai AS, Jhund PS, Claggett B, Vaduganathan M, et al. Dapagliflozin in heart failure with improved ejection fraction: a prespecified analysis of the DELIVER trial. Nat Med 2022;28:2504–11. https://doi.org/10.1038/s41591-022-02102-9
13. Vaduganathan M, Docherty KF, Claggett BL, Jhund PS, de Boer RA, Hernandez AF, et al. SGLT-2 inhibitors in patients with heart failure: a comprehensive meta-analysis of five randomised controlled trials. Lancet 2022;400:757–67. https://doi.org/10.1016/S0140-6736(22)01429-5
14. 2023 Focused Update of the 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: Developed by the task force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) With the special contribution of the Heart Failure Association (HFA) of the ESC
15. Heerspink HJL, Stefánsson BV, Correa-Rotter R, et al. Dapagliflozin in patients with chronic kidney disease. N Engl J Med. 2020;383:1436–1446. doi: 10.1056/NEJMoa2024816.
16. The EMPA-KIDNEY Collaborative Group. Empagliflozin in Patients with Chronic Kidney Disease. N. Engl. J. Med. 2022;388:117–127. doi: 10.1056/NEJMoa2204233.
17. Baigent C., Emberson J., Haynes R., Herrington W.G., Judge P., Landray M.J., Mayne K.J., Ng S.Y.A., Preiss D., Roddick A.J., et al. Impact of Diabetes on the Effects of Sodium Glucose Co-Transporter-2 Inhibitors on Kidney Outcomes: Collaborative Meta-Analysis of Large Placebo-Controlled Trials. Lancet. 2022;400:1788–1801. doi: 10.1016/S0140-6736(22)02074-8.
18. Packer M. Cardioprotective effects of sirtuin-1 and its downstream effectors: potential role in mediating the heart failure benefits of SGLT2 (sodium-glucose cotransporter 2) inhibitors. Circ Heart Fail. 2020;13 DOI: 10.1161/CIRCHEARTFAILURE.120.007197
19. Cowie MR, Fisher M. SGLT2 inhibitors: mechanisms of cardiovascular benefit beyond glycaemic control. Nat Rev Cardiol. 2020;17:761–772. doi: 10.1038/s41569-020-0406-8.
20. Van Bommel E.J.M., Muskiet M.H.A., van Baar M.J.B., et al. The Renal Hemodynamic Effects of the SGLT2 Inhibitor Dapagliflozin Are Caused by Post-Glomerular Vasodilatation Rather than Pre-Glomerular Vasoconstriction in Metformin-Treated Patients with Type 2 Diabetes in the Randomized, Double-Blind RED Trial. Kidney Int. 2020;97:202–212. doi: 10.1016/j.kint.2019.09.013.
21. Vallon V, Verma S. Effects of SGLT2 inhibitors on kidney and cardiovascular function. Annu Rev Physiol. 2021;83:503–528. doi: 10.1146/annurev-physiol-031620-095920
22. Sano M. A new class of drugs for heart failure: SGLT2 inhibitors reduce sympathetic overactivity. J Cardiol. 2018;71:471–476. doi: 10.1016/j.jjcc.2017.12.004.
23. Vallon V, Thomson SC. The tubular hypothesis of nephron filtration and diabetic kidney disease. Nat Rev Nephrol. 2020;16:317–336. doi: 10.1038/s41581-020-0256-y.
24. Packer M. Mechanisms leading to differential hypoxia-inducible factor signaling in the diabetic kidney: modulation by SGLT2 inhibitors and hypoxia mimetics. Am J Kidney Dis. 2021;77:280–286. DOI: 10.1053/j.ajkd.2020.04.016
25. Yu YW, Que JQ, Liu S, et al. Sodium-glucose co-transporter-2 inhibitor of dapagliflozin attenuates myocardial ischemia/reperfusion injury by limiting NLRP3 inflammasome activation and modulating autophagy. Front Cardiovasc Med. 2022;8 DOI: 10.3389/fcvm.2021.768214
26. Ferrannini E, Mark M, Mayoux E. CV protection in the EMPA-REG OUTCOME trial: a “thrifty substrate” hypothesis. Diabetes Care. 2016;39:1108–1114. https://doi.org/10.2337/dc16-0330
27. Lopaschuk GD, Karwi QG, Tian R, Wende AR, Abel ED. Cardiac energy metabolism in heart failure. Circ Res. 2021;128:1487–1513. DOI: 10.1161/CIRCRESAHA.121.318241
28. D'Onofrio N, Servillo L, Balestrieri ML. SIRT1 and SIRT6 signaling pathways in cardiovascular disease protection. Antioxid Redox Signal. 2018;28:711–732. doi: 10.1089/ars.2017.7178.
29. Herzig S, Shaw RJ. AMPK: guardian of metabolism and mitochondrial homeostasis. Nat Rev Mol Cell Biol. 2018;19:121–135. DOI: 10.1038/nrm.2017.95
30. Fontecha-Barriuso M, Martin-Sanchez D, Martinez-Moreno JM, et al. The role of PGC-1α and mitochondrial biogenesis in kidney diseases. Biomolecules. 2020;10:347. doi: 10.3390/biom10020347
31. Clark AJ, Parikh SM. Targeting energy pathways in kidney disease: the roles of sirtuins, AMPK, and PGC1α Kidney Int. 2021;99:828–840. DOI: 10.1016/j.kint.2020.09.037
32. Davogustto GE, Salazar RL, Vasquez HG, et al. Metabolic remodeling precedes mTORC1-mediated cardiac hypertrophy. J Mol Cell Cardiol. 2021;158:115–127. DOI: 10.1016/j.yjmcc.2021.05.016
33. Horton JL, Davidson MT, Kurishima C, et al. The failing heart utilizes 3-hydroxybutyrate as a metabolic stress defense. JCI Insight. 2019;4. DOI: 10.1172/jci.insight.124079
34. Xu M, Xue RQ, Lu Y, et al. Choline ameliorates cardiac hypertrophy by regulating metabolic remodelling and UPRmt through SIRT3-AMPK pathway. Cardiovasc Res. 2019;115:530–545. DOI: 10.1093/cvr/cvy217
35. Bhargava P, Schnellmann RG. Mitochondrial energetics in the kidney. Nat Rev Nephrol. 2017;13:629–646. DOI: 10.1038/nrneph.2017.107
36. Kogot-Levin A, Hinden L, Riahi Y, et al. Proximal tubule mTORC1 is a central player in the pathophysiology of diabetic nephropathy and its correction by SGLT2 Inhibitors. Cell Rep. 2020;32. DOI: 10.1016/j.celrep.2020.107954
37. Fontecha-Barriuso M, Martin-Sanchez D, Martinez-Moreno JM, et al. The role of PGC-1α and mitochondrial biogenesis in kidney diseases. Biomolecules. 2020;10:347. doi: 10.3390/biom10020347
38. Ferrannini G, Hach T, Crowe S, Sanghvi A, Hall KD, Ferrannini E. Energy balance after sodium-glucose cotransporter 2 inhibition. Diabetes Care. 2015;38:1730–1735. DOI: 10.2337/dc15-0355
39. Al Jobori H, Daniele G, Adams J, et al. Empagliflozin treatment is associated with improved β-cell function in type 2 diabetes mellitus. J Clin Endocrinol Metab. 2018;103:1402–1407. DOI: 10.1210/jc.2017-01838
40. Tanaka S, Sugiura Y, Saito H, et al. Sodium-glucose cotransporter 2 inhibition normalizes glucose metabolism and suppresses oxidative stress in the kidneys of diabetic mice. Kidney Int. 2018;94:912–925. DOI: 10.1016/j.kint.2018.04.025
41. Santos-Gallego CG, Requena-Ibanez JA, San Antonio R, et al. Empagliflozin ameliorates adverse left ventricular remodeling in nondiabetic heart failure by enhancing myocardial energetics. J Am Coll Cardiol. 2019;73:1931–1944. DOI: 10.1016/j.jacc.2019.01.056
42. Koyani CN, Plastira I, Sourij H, et al. Empagliflozin protects heart from inflammation and energy depletion via AMPK activation. Pharmacol Res. 2020;158 DOI: 10.1016/j.phrs.2020.104870
43. He L, Ma S, Zuo Q, et al. An effective sodium-dependent glucose transporter 2 inhibition, canagliflozin, prevents development of hypertensive heart failure in Dahl salt-sensitive rats. Front Pharmacol. 2022;13 https://doi.org/10.3389/fphar.2022.856386
44. Aragón-Herrera A, Feijóo-Bandín S, Otero Santiago M, et al. Empagliflozin reduces the levels of CD36 and cardiotoxic lipids while improving autophagy in the hearts of Zucker diabetic fatty rats. Biochem Pharmacol. 2019;170 DOI: 10.1016/j.bcp.2019.113677
45. Bessho R, Takiyama Y, Takiyama T, et al. Hypoxia-inducible factor-1α is the therapeutic target of the SGLT2 inhibitor for diabetic nephropathy. Sci Rep. 2019;9:14754. DOI: 10.1038/s41598-019-51343-1
46. Inzucchi SE, Zinman B, Fitchett D, et al. How does empagliflozin reduce cardiovascular mortality? Insights from a mediation analysis of the EMPA-REG OUTCOME trial. Diabetes Care. 2018;41:356–363. DOI: 10.2337/dc17-1096
47. Tziastoudi M, Pissas G, Golfinopoulos S, Filippidis G, Dousdampanis P, Eleftheriadis T, Stefanidis I. Sodium-Glucose Transporter 2 (SGLT2) Inhibitors and Iron Deficiency in Heart Failure and Chronic Kidney Disease: A Literature Review. Life (Basel). 2023 Dec 13;13(12):2338. doi: 10.3390/life13122338.
48. Blackwood EA, Hofmann C, Santo Domingo M, et al. ATF6 regulates cardiac hypertrophy by transcriptional induction of the mTORC1 activator, Rheb. Circ Res. 2019;124:79–93. DOI: 10.1161/CIRCRESAHA.118.313854
49. Kogot-Levin A, Hinden L, Riahi Y, et al. Proximal tubule mTORC1 is a central player in the pathophysiology of diabetic nephropathy and its correction by SGLT2 Inhibitors. Cell Rep. 2020;32. DOI: 10.1016/j.celrep.2020.107954
50. Sun X, Han F, Lu Q, et al. Empagliflozin ameliorates obesity-related cardiac dysfunction by regulating sestrin2-mediated AMPK-mTOR Signaling and redox homeostasis in high-fat diet-induced obese mice. Diabetes. 2020;69:1292–1305. DOI: 10.2337/db19-0991
51. Ren C, Sun K, Zhang Y, et al. Sodium-glucose cotransporter-2 inhibitor empagliflozin ameliorates sunitinib-induced cardiac dysfunction via regulation of AMPK-mTOR signaling pathway-mediated autophagy. Front Pharmacol. 2021;12. DOI: 10.3389/fphar.2021.664181
52. Tomita I, Kume S, Sugahara S, et al. SGLT2 inhibition mediates protection from diabetic kidney disease by promoting ketone body-induced mTORC1 inhibition. Cell Metab. 2020;32:404–419. DOI: 10.1016/j.cmet.2020.06.020