Статья
Основные положенияПредставлен обзор исследований о механизмах церебропротекции и влиянии гипотермии на пациента. РезюмеЕжегодно в мире проводят большое количество хирургических коррекций врожденных пороков сердца, большую часть из них – с использованием искусственного кровообращения. Любая такая операция имеет набор патологических для головного мозга факторов, в некоторых хирургическая стратегия предполагает применение гипотермии. В частности, гипотермия должна обладать нейропротективным эффектом, однако, как показывают последние исследования, это не всегда так. Обзор посвящен механизмам влияния гипотермии на организм пациента, среди которых не только снижение метаболизма мозга, но и ряд других. Представлены актуальные работы о применении гипотермии при операциях, не требующих циркуляторного ареста, с анализом интра- и послеоперационного периода.
1. Hottinger S. J., Liamlahi R., Feldmann M., Knirsch W., Latal B., Hagmann C.F.; Heart and Brain Research Group.. Postoperative improvement of brain maturation in infants with congenital heart disease. Semin Thorac Cardiovasc Surg. 2022; 34 (1): 251–259. doi: 10.1053/j. semtcvs.2020.11.029.
2. Борисенко Д.В., Ивкин А.А., Шукевич Д.Л. Современные методы ограничения системного воспалительного ответа при коррекции врожденных пороков сердца у детей в условиях искусственного кровообращения. Комплексные проблемы сердечно-сосудистых заболеваний. 2021;10 (2): 113-124. doi: 10.17802/2306-1278-2021-10-2-113-124
3. Karacaer F., Biricik E., Ilgınel M., Tunay D.L., Döğüş Y., Öztürk Ö.G., Güzel Y., Benli O., Güneş Y. The Anti-Inflammatory and Antioxidant Effects of Propofol and Sevoflurane in Children With Cyanotic Congenital Heart Disease. J Cardiothorac Vasc Anesth. 2023; 37(1): 65-72. doi: 10.1053/j.jvca.2022.09.094.
4. Wiberg S., Holmgaard F., Zetterberg H., Nilsson J.C., Kjaergaard J., Wanscher M., Langkilde A.R., Hassager C., Rasmussen L.S., Blennow K., Vedel A.G. Biomarkers of Cerebral Injury for Prediction of Postoperative Cognitive Dysfunction in Patients Undergoing Cardiac Surgery. J Cardiothorac Vasc Anesth. 2022; 36(1): 125-132. doi: 10.1053/j.jvca.2021.05.016
5. Sun L., Zhang K., Chen H., Ji W., Huang Y., Zhang M., Zheng J. Age-related changes in cerebral hemodynamics in children undergoing congenital cardiac surgery: a prospective observational study. J Cardiothorac Vasc Anesth. 2022; 36 (6): 1617–1624. doi: 10.1053/j.jvca.2021.08.099.
6. Hansen T.G. Anesthesia-related neurotoxicity and the developing animal brain is not a significant problem in children. Paediatr Anaesth. 2015;25(1):65-72 doi:10.1111/pan.12548
7. Meyburg J., Dill M.L., Traube C., Silver G., von Haken R. Patterns of Post- operative Delirium in Children. Pediatric Critical Care Medicine. 2017; 18(2):128-133. doi: 10.1097/PCC.0000000000000993
8. Ивкин А. А., Григорьев Е. В., Цепокина А. В., Шукевич Д.Л. Послеоперационный делирий у детей при коррекции врожденных септальных пороков сердца. Вестник анестезиологии и реаниматологии. 2021; 18 (2): 62–68. doi: 10.21292/2078-5658-2021-18-2-62-6.
9. Bigelow W.G., Lindsay W.K., Greenwood W.F. Hypothermia: Its Possible Role in Cardiac Surgery: An Investigation of Factors Governing Survival in Dogs at Low Body Temperatures. Ann Surg. 1950; 132: 849–866. doi: 10.1097/00000658-195011000-00001.
10. Lewis F.J., Taufic M. Closure of Atrial Septal Defects with the Aid of Hypothermia; Experimental Accomplishments and the Report of One Successful Case. Surgery. 1953; 33: 52–59.
11. Weiss M., Piwnica A., Lenfant C., Sprovieri L., Laurent D., Blondeau P., Dubost C. Deep Hypothermia with Total Circulatory Arrest. Trans Am Soc Artif Intern Organs. 1960; 6: 227–239.
12. Croughwell N., Smith L.R., Quill T., Newman M., Greeley W., Kern F., Joe Lu., Reves J.G. The effect of temperature on cerebral metabolism and blood flow in adults during cardiopulmonary bypass. J Thorac Cardiovasc Surg.1992; 103(3): 549–554. doi:10.1016/s0022-5223(19)34997-9
13. Baumann E., Preston E., Slinn J., Stanimirovic D. Post-ischemic hypothermia attenuates loss of the vascular basement membrane proteins, agrin and SPARC, and the blood-brain barrier disruption after global cerebral ischemia. Brain Research. 2009; 1269: 185–197. doi: 10.1016/j.brainres.2009.02.062.
14. Matsui T., Kakeda T. IL-10 production is reduced by hypothermia but augmented by hyperthermia in rat microglia. Journal of Neurotrauma. 2008; 25(6): 709–715. doi: 10.1089/neu.2007.0482.
15. Kaushal V., Schlichter L.C. Mechanisms of microglia-mediated neurotox- icity in a new model of the stroke penumbra. J Neurosci. 2008; 28 (9): 2221-2230. doi: 10.1523/JNEUROSCI.5643-07.2008.
16. Pozhilenkova E.A., Lopatina O.L., Komleva Y.K., Salmin V.V., Salmina A.B. Blood-brain barrier-supported neurogenesis in healthy and diseased brain. Rev Neurosci. 2017; 28 (4): 397-415. doi: 10.1515/revneuro-2016-0071.
17. Murry C.E., Jennings R.B., Reimer K.A. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation. 1986; 74 (5): 1124-36. doi: 10.1161/01.cir.74.5.1124.
18. Fisher F.M., Kleiner S., Douris N., Fox E.C., Mepani R.J., Verdeguer F., Wu J., Kharitonenkov A., Flier J.S., Maratos-Flier E., Spiegelman B.M. FGF21 regulates PGC-1α and browning of white adipose tissues in adaptive thermogenesis. Genes Dev. 2012; 26 (3): 271-281. doi: 10.1101/gad.177857.111.
19. Herrmann J.R., Fink E.L., Fabio A., Berger R.P., Janesko-Feldman K., Gorse K., Clark R.S.B., Kochanek P.M., Jackson T.C. Characterization of Circulating Cold Shock Proteins FGF21 and RBM3 in a Multi-Center Study of Pediatric Cardiac Arrest. Ther Hypothermia Temp Manag. 2023 Sep 5. doi: 10.1089/ther.2023.0035.
20. Herrmann J.R., Fink E.L., Fabio A., Au A.K., Berger R.P., Janesko-Feldman K., Clark R.S.B., Kochanek P.M., Jackson T.C. Serum levels of the cold stress hormones FGF21 and GDF-15 after cardiac arrest in infants and children enrolled in single center therapeutic hypothermia clinical trials. Resuscitation. 2022; 172: 173-180. doi: 10.1016/j.resuscitation.2021.11.016.
21. Hu Y., Liu Y., Quan X., Fan W., Xu B., Li S. RBM3 is an outstanding cold shock protein with multiple physiological functions beyond hypothermia. J Cell Physiol. 2022; 237 (10): 3788-3802. doi: 10.1002/jcp.30852
22. Corre M., Lebreton A. Regulation of cold-inducible RNA-binding protein (CIRBP) in response to cellular stresses. Biochimie. 2023;8:S0300-9084(23):80-89. doi: 10.1016/j.biochi.2023.04.003
23. Sun W., Liao Y., Yi Q., Wu S., Tang L., Tong L. The Mechanism of CIRP in Regulation of STAT3 Phosphorylation and Bag-1/S Expression Upon UVB Radiation. Photochem Photobiol. 2018; 94 (6): 1234-1239. doi: 10.1111/php.1298
24. Liu M., Li Y., Gao S., Yan S., Zhang Q., Liu G., Ji B. A novel target to reduce microglial inflammation and neuronal damage after deep hypothermic circulatory arrest. J Thorac Cardiovasc Surg. 2020; 159 (6): 2431-2444.. doi: 10.1016/j.jtcvs.2019.06.115
25. Jackson T.C., Kotermanski S.E., Kochanek P.M. Infants Uniquely Express High Levels of RBM3 and Other Cold-Adaptive Neuroprotectant Proteins in the Human Brain. Journal of Developmental Neuroscience. 2018; 40 (4): 325-336. doi: 10.1159/000493637
26. Jain V.. Langham M.C.. Wehrli F.W. MRI Estimation of Global Brain Oxygen Consumption Rate. J Cereb Blood Flow Metab.2010; 30: 1598–1607. doi: 10.1038/jcbfm.2010.49
27. Norwood W.I., Norwood C.R. Influence of Hypothermia on Intracellular PH during Anoxia. Am. J. Physiol. 1982; 243: 62–65
28. Jonas R.A., Bellinger D.C., Rappaport L.A., Wernovsky G., Hickey P.R., Farrell D.M., Newburger J.W. Relation of PH Strategy and Developmental Outcome after Hypothermic Circulatory Arrest. J Thorac Cardiovasc Surg. 1993; 106: 362–368
29. Maisat W., Yuki K. Narrative review of systemic inflammatory response mechanisms in cardiac surgery and immunomodulatory role of anesthetic agents. Narrative review of systemic inflammatory response mechanisms in cardiac surgery and immunomodulatory role of anesthetic agents. Annals of Cardiac 2023; 26 (2): 133-142. doi: 10.4103/aca.aca_147_22.
30. Deist F. L., Menasché P., Kucharski C. Hypothermia during cardiopulmo- nary bypass delays but does not prevent neutrophil-endothelial cell adhesion. A clinical study. Circulation. 1995; 92 (9): 354–358.
31. Stocker C. F., Shekerdemian L. S., Horton S. B. The influence of bypass temperature on the systemic inflammatory response and organ injury after pediatric open surgery: a randomized trial. J Thorac Cardiovasc Surg. 2011. 142 (1): 174–180. doi: 10.1016/j.jtcvs.2011.01.059
32. Caputo M., Pike K., Baos S., Sheehan K., Selway K., Ellis L., Stoica S., Parry A., Clayton G., Culliford L., Angelini G.D., Pandey R., Rogers C.A. Normothermic versus hypothermic cardiopulmonary bypass in low-risk paediatric heart surgery: a randomised controlled trial. Heart. 2019; 105 (6): 455-464. doi: 10.1136/heartjnl-2018-313567
33. Corno A.F., Bostock C., Chiles S.D., Wright J., Tala M.J., Mimic B., Cvetkovic M. Comparison of Early Outcomes for Normothermic and Hypothermic Cardiopulmonary Bypass in Children Undergoing Congenital Heart Surgery. Frontiers in Pediatrics. 2018; 17 (6): 219-225. doi: 10.3389/fped.2018.00219
34. Felfernig M., Blaicher S., Kettner C. Effects of temperature on partial thromboplastin time in heparinized plasma in vitro. Eur J Anaesthesiol. 2001; 18 (7): 467–470. doi: 10.1046/j.1365-2346.2001.00869.x
35. Di Gregorio G., Sella N., Spiezia L., Menin E., Boscolo A., Pasin L., Pittarello D., Vida V., Simioni P., Navalesi P. Cardiopulmonary bypass-induced coagulopathy in pediatric patients: The role of platelets in postoperative bleeding. A preliminary study. Artif Organs. 2021; 45 (8): 852–860. doi: 10.1111/aor.13912
36. Alkhatip A.M., Kamel M.G., Farag E.M., Elayashy M., Farag A., Yassin H.M., Bahr M.H., Abdelhaq M., Sallam A., Kamal A.M., Emady M.F.E., Wagih M., Naguib A.A., Helmy M., Algameel H.Z., Abdelkader M., Mohamed H., Younis M., Purcell A., Elramely M., Hamza M.K. Deep hypothermic circulatory arrest in the pediatric population undergoing cardiac surgery with electroencephalography monitoring: a systematic review and meta-analysis. J Cardiothorac Vasc Anesth. 2021; 35 (10): 2875–2888. doi: 10.1053/j.jvca.2021.01.039
37. Jungwirth B., Mackensen G.B., Blobner M., Neff F., Reichart B., Kochs E.F., Nollert G. Neurologic outcome after cardiopulmonary bypass with deep hypothermic circulatory arrest in rats: description of a new model. J Thorac Cardiovasc Surg. 2006; 131 (4): 805-812. doi: 10.1016/j.jtcvs.2005.11.017
38. Tu LN, Timms AE, Kibiryeva N, Bittel D, Pastuszko A, Nigam V, Pastuszko P. Transcriptome profiling reveals activation of inflammation and apoptosis in the neonatal striatum after deep hypothermic circulatory arrest. J Thorac Cardiovasc Surg.2019; 158 (3):882-890. doi: 10.1016/j.jtcvs.2019.02.091.