RT - article SR - Electronic T1 - Фенотипирование факторов риска и прогнозирование внутригоспитальной летальности у больных ишемической болезнью сердца после коронарного шунтирования на основе методов объяснимого искусственного интеллекта JF - Российский кардиологический журнал SP - 2023-03-19 DO - 10.15829/1560-4071-2023-5302 A1 - Гельцер Б. И., A1 - Шахгельдян К. И., A1 - Рублев В. Ю., A1 - Домжалов И. Г., A1 - Циванюк М. М., A1 - Шекунова О. И., YR - 2023 UL - https://www.cardiojournal.online/publication/11877 AB - Цель. Разработать прогностические модели внутригоспитальной летальности (ВГЛ) у больных ишемической болезнью сердца после коронарного шунтирования (КШ) с учетом результатов фенотипирования дооперационных факторов риска.Материал и методы. Проведено ретроспективное исследование по данным 999 электронных историй болезни пациентов (805 мужчин, 194 женщины) в возрасте от 35 до 81 года с медианой (Ме) 63 года, которым выполнялось плановое изолированное КШ в условиях искусственного кровообращения. Выделено две группы пациентов, первая из которых была представлена 63 (6,3%) больными, умершими в стационаре в течение первых 30 сут. после КШ, вторая — 936 (93,7%) с благоприятным исходом операции. Дооперационный клинико-функциональный статус оценивали с помощью 102 факторов. Для обработки и анализа данных использовали методы хи-квадрат, Фишера, Манна-Уитни. Пороговые значения предикторов определялись комплексом методов, включающих максимизацию отношений истинно положительных случаев ВГЛ к ложноположительным. Для разработки прогностических моделей применяли многофакторную логистическую регрессию (МЛР). Точность моделей оценивали по 3 метрикам: площадь под ROC-кривой (AUC), чувствительность (Sen) и специфичность (Spec).Результаты. Анализ показателей дооперационного статуса пациентов позволил выделить 28 факторов риска ВГЛ, объединённых в 7 фенотипов. Последние формировали признаковое пространство прогностической модели ВГЛ, в котором каждый признак демонстрирует соответствие пациента определенному фенотипу факторов риска. Авторская модель МЛР отличалась высокими метриками качества (AUC — 0,91; Sen — 0,9 и Spec — 0,85).Заключение. Разработанный алгоритм обработки и анализа данных обеспечил высокое качество выделения дооперационных факторов риска и прогнозирования ВГЛ после КШ. Перспективы дальнейших исследований по данной проблеме связаны с совершенствованием технологий объяснимого искусственного интеллекта, позволяющих разрабатывать информационные системы по управлению рисками, востребованные в повседневной клинической практике.