1. Gaudino M, Hameed I, Farkouh ME, et al. Overall and Cause-Specific Mortality in Randomized Clinical Trials Comparing Percutaneous Interventions With Coronary Bypass Surgery: A Meta-analysis. JAMA Internal Medicine. 2020;180:1638-46. doi:10.1001/jamainternmed.2020.4748.
2. Doenst T, Haverich A, Serruys P, et al. PCI and CABG for Treating Stable Coronary Artery Disease: JACC Review Topic of the Week. Journal of the American College of Cardiology. 2019;73:964-9. doi:10.1016/j.jacc.2018.11.053.
3. Chang H, Li ZB, Wu JY, et al. Circ-100338 induces angiogenesis after myocardial ischemia-reperfusion injury by sponging miR-200a-3p. European Review for Medical and Pharmacological Sciences. 2020;24:6323-32. doi:10.26355/eurrev_202006_21530
4. Geng T, Song ZY, Xing JX, et al. Exosome Derived from Coronary Serum of Patients with Myocardial Infarction Promotes Angiogenesis Through the miRNA-143/IGF-IR Pathway. International Journal of Nanomedicine. 2020;15:2647-58. doi:10.2147/IJN.S242908.
5. Aikawa T, Naya M, Koyanagawa K, et al. Improved regional myocardial blood fow and fow reserve after coronary revascularization as assessed by serial 15O-water positron emission tomography/computed tomography. European Heart Journal Cardiovascular Imaging. 2020;21:36-46. doi:10.1093/ehjci/jez220.
6. Gutterman DD, Chabowski DS, Kadlec AO, et al. The Human Microcirculation: Regulation of Flow and Beyond. Circulation Research. 2016;118:157-72. doi:10.1161/CIRCRESAHA.115.305364.
7. Potz BA, Parulkar AB, Abid RM, et al. Novel molecular targets for coronary angiogenesis and ischemic heart disease. Coronary Artery Disease. 2017;28:605-13. doi:10.1097/MCA.0000000000000516.
8. Плечев В. В., Олейник Б. А., Рисберг Р. Ю. и др. Новые возможности стимуляции неоангиогенеза при остром инфаркте миокарда у кроликов. Медицинский вестник Башкортостана. 2012;7(4):54-7.
9. Лазарева Д. Н., Алехин Е. К., Плечев В. В. и др. Иммурег. Уфа. 2004. с. 103.
10. Kobayashi K, Maeda K, Takefuji M, et al. Dynamics of angiogenesis in ischemic areas of the infarcted heart. Scientific reports. 2017;7:7156. doi:10.1038/s41598-017-07524-x.
11. Teuscher E, Weidlich V. Adenosine nucleotides, adenosine and adenine as angiogenesis factors. Biomed Biochim Acta. 1985;44(3):493-5.
12. Jafar N, Hussein A. Pyrimidine Derivatives as Promising Candidates for Potent Antiangiogenic: A silico Study. Journal of Contemporary Medical Sciences. 2022;7(6):3537. doi:10.22317/jcms.v7i6.1087.
13. Satterwhite СM, Angela MF, Bradley ME. Chemotactic, mitogenic, and angiogenic actions of UTP on vascular endothelial cells. Am. J. Physiol. 1999;276(3):1091-7. doi:10.1152/ajpheart.1999.276.3.H1091.
14. Мышкин В. А., Бакиров А. Б., Репина Э. Ф. и др. Антиоксидантная активность оксиметилурацила. Медицина труда и экология человека. 2015;3:265-74.
15. Бакирова З. А. К вопросу о механизме действия производных пиримидина. Фундаментальные науки-практическому здравоохранению: Тезисы докладов-Уфа. 1990:9.
16. Piccirillo F, Carpenito M, Verolino G, et al. Changes of the coronary arteries and cardiac microvasculature with aging: Implications for translational research and clinical practice. Mechanisms of Ageing and Development. 2019;184:111-61. doi:10.1016/j.mad.2019.111161.
17. Simard T, Jung R, Labinaz A, et al. Adenosine as a Marker and Mediator of Cardiovascular Homeostasis: A Translational Perspective. Cardiovascular & Hematological DisordersDrug Targets. 2019;19(2):109-31. doi:10.2174/1871529X18666181011103719.
18. Ludwig N, Jackson EK, Whiteside TL. Role of exosome-associated adenosine in promoting angiogenesis. Vessel Plus. 2020;4:8. doi:10.20517/2574-1209.2019.37.
19. Ferrara N. Vascular endothelial growth factor: basic science and clinical progress. Endocrine Reviews. 2004;25:581-611. doi:10.1210/er.2003-0027.
20. Arany Z, Foo SY, Ma Y, et al. HIF-independent regulation of VEGF and angiogenesis by the transcriptional coactivator PGC-1alpha. Nature. 2008;451:1008-12. doi:10.1038/nature06613.
21. Wei G, Yin Y, Duan J, et al. Hydroxysafflor yellow A promotes neovascularization and cardiac function recovery through HO-1/VEGF-A/SDF-1alpha cascade. Biomedicine & Pharmacotherapy. 2017;88:409-20. doi:10.1016/j.biopha.2017.01.074.
22. Zou J, Wang N, Liu M, et al. Nucleolin mediated pro-angiogenic role of Hydroxysafflor Yellow A in ischaemic cardiac dysfunction: Post-transcriptional regulation of VEGF-A and MMP-9. Journal of Cellular and Molecular Medicine. 2018;22:2692-705. doi:10.1111/jcmm.13552.
23. Zhai S, Zhang XF, Lu F, et al. Chinese medicine GeGen-DanShen extract protects from myocardial ischemic injury through promoting angiogenesis via up-regulation of VEGF/VEGFR2 signaling pathway. Journal of Ethnopharmacology. 2021;267:113475. doi:10.1016/j.jep.2020.113475.
24. Zhang J, Liu A, Hou R, et al. Salidroside protects cardiomyocyte against hypoxiainduced death: a HIF-1alpha-activated and VEGF-mediated pathway. European Journal of Pharmacology. 2009;607:6-14. doi:10.1016/j.ejphar.2009.01.046.
25. Jia T, Jacquet T, Dalonneau F, et al. FGF-2 promotes angiogenesis through a SRSF1/ SRSF3/SRPK1-dependent axis that controls VEGFR1 splicing in endothelial cells. BMC Biol. 2021;19(1):173. doi:10.1186/s12915-021-01103-3.
26. Moorthy V, Sim MA, Liu W, et.al. Risk factors and impact of postoperative hyperglycemia in nondiabetic patients after cardiac surgery: A prospective study. Medicine (Baltimore). 2019;98(23):e15911. doi:10.1097/MD.0000000000015911.
27. Redant S, De Bels D, Villet B, et al. Glucose Homeostasis during the Perioperative Period of Cardiac Surgery: A Narrative Review. Cardiology and Cardiovascular Medicine. 2021;5(1):536-46. doi:10.26502/fccm.92920178.
28. Oleynik BA, Plechev VV, Bayburina GA, et al. 5-Oxymethyluracil Stimulate Neoangiogenesis in Postinfarction Cardiosclerosis Model in Rabbits. Journal of the American College of Cardiology. 2022;79:S15. doi:10.1016/j.jacc.2022.03.034.
29. Tiwari A, Elgrably B, Saar G, et al. Multi-Scale Imaging of Vascular Pathologies in Cardiovascular Disease. Front Med (Lausanne). 2022;5(8):754369. doi:10.3389/fmed.2021.754369.
30. Balogh V, MacAskill MG, Hadoke PWF, et al. Positron Emission Tomography Techniques to Measure Active Infammation, Fibrosis and Angiogenesis: Potential for Non-invasive Imaging of Hypertensive Heart Failure. Front Cardiovasc Med. 2021;8:719031. doi:10.3389/fcvm.2021.719031.