1. Беленков Ю.Н., Мареев В.Ю., Агеев Ф.Т., Фомин И.В., Бадин Ю.В., Поляков Д.С., Даниелян М.О., Артемьева Е.Г., Маленкова В.Ю., Порошина Е.А., Тарловская Е.И., Смирнова Е.А., Якушин С.С., Щербинина Е.В. Истинная распространенность ХСН в европейской части Российской Федерации (госпитальный этап). Журнал сердечная недостаточность 2011; 12, 2: 63-68).
2. Mosterd A, Hoes AW. Clinical epidemiology of heart failure. Heart 2007;93: 1137–1146. doi: 10.1136/hrt.2003.025270.
3. Клинические рекомендации. Хроническая сердечная недостаточность. Москва: МЗ РФ 2016.
4. Yancy C.W., Jessup M., Bozkurt B., Butler J., Casey D.E. Jr., Drazner M.H., Fonarow G.C., Geraci S.A., Horwich T., Januzzi J.L., Johnson M.R., Kasper E.K., Levy W.C., Masoudi F.A., McBride P.E., McMurray J.J., Mitchell J.E., Peterson P.N., Riegel B., Sam F., Stevenson L.W., Tang W.H., Tsai E.J., Wilkoff B.L.; American College of Cardiology Foundation; American Heart Association Task Force on Practice Guidelines. 2013 ACCF/ AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2013;62: e147‐e239. doi: 10.1016/j.jacc.2013.05.019.
5. Малов Ю.С., Борисов И.М., Галова Е.П., Яровенко И.И. Диагностические возможности электрокардиографии систолической сердечной недостаточности. Вестник Российской Военно-Медицинской академии. 2018; 3(63): 86–89.
6. Малов, Ю.С. Удлинение систолы желудочков — признак нарушения сократительной функции миокарда. Вестник Санкт-Петербургского университета. Медицина. 2016;11(1): 5-11.
7. Малов Ю.С., Марин А.И. Особенности электрокардиограммы у больных инфарктом миокарда, осложненном острой сердечной недостаточностью. Вестник Российской Военно-Медицинской академии. 2015; 2(50): 11-14.
8. Tuohinen S. S., Rankinen J., Skyttä T., Huhtala H., Virtanen V., Kellokumpu-Lehtinen P.L., Raatikainen P., Nikus K. Associations between ECG changes and echocardiographic findings in patients with acute non-ST elevation myocardial infarction. Journal of Electrocardiology.2018; 51(2):188-194. doi: 10.1016/j.jelectrocard.2017.11.007.
9. Møller J.E., Husic M., Søndergaard E., Poulsen S.H., Egstrup K. Relation of early changes of QT dispersion to changes in left ventricular systolic and diastolic function after a first acute myocardial infarction. Scand Cardiovasc J. 2002;36(4):225-30. doi: 10.1080/14017430260180382.
10. Li Z.B., Wachtell K., Okin P.M., Gerdts E., Liu J.E., Nieminen M.S., Jern S., Dahlöf B., Devereux R.B. Association of left bundle branch block with left ventricular structure and function in hypertensive patients with left ventricular hypertrophy: the LIFE study. J Hum Hypertens. 2004;18(6):397-402. doi: 10.1038/sj.jhh.1001709..
11. Deniz A., Özmen Ç., Aktaş H., Berk İ.G., Deveci O.S., Çağlıyan Ç.E, Eker Akıllı R., Kanadaşı M., Demir M., Usal A. Electrocardiographic markers of left ventricular systolic dysfunction in patients with left bundle branch block. Kardiol Pol. 2016;74(1):25-31. doi: 10.5603/KP.a2015.0119.
12. Ikonomidis I., Katsanos S., Triantafyllidi H., Parissis J., Tzortzis S., Pavlidis G., Trivilou P., Makavos G., Varoudi M., Frogoudaki A., Vrettou A.R., Vlastos D., Lekakis J., Iliodromitis E. Pulse wave velocity to global longitudinal strain ratio in hypertension. Eur J Clin Invest. 2019;49(2):e13049. doi: 10.1111/eci.13049.
13. Kim D., Shim C.Y., Hong G.R., Park S., Cho I., Chang H.J., Ha J.W., Chung N. Differences in left ventricular functional adaptation to arterial stiffness and neurohormonal activation in patients with hypertension: a study with two-dimensional layer-specific speckle tracking echocardiography. Clin Hypertens. 2017;23:21. doi: 10.1186/s40885-017-0078-9.
14. Sugawara J., Tanabe T., Miyachi M., Yamamoto K., Takahashi K., Iemitsu M., Otsuki T., Homma S., Maeda S., Ajisaka R., Matsuda M. Non-invasive assessment of cardiac output during exercise in healthy young humans: comparison between Modelflow method and Doppler echocardiography method. Acta Physiol Scand. 2003;179(4):361-6. doi: 10.1046/j.0001-6772.2003.01211.x.
15. Lang R.M., Badano L.P., Mor-Avi V., Afilalo J., Armstrong A., Ernande L., Flachskampf F.A., Foster E., Goldstein S.A., Kuznetsova T., Lancellotti P., Muraru D., Picard M.H., Rietzschel E.R., Rudski L., Spencer K.T., Tsang W., Voigt J.U. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr. 2015;28(1):1-39.e14. doi: 10.1016/j.echo.2014.10.003.
16. McDonagh T.A., Metra M., Adamo M., Gardner R.S., Baumbach A., Böhm M., Burri H., Butler J., Čelutkienė J., Chioncel O., Cleland J.G.F., Coats A.J.S., Crespo-Leiro M.G., Farmakis D., Gilard M., Heymans S., Hoes A.W., Jaarsma T., Jankowska E.A., Lainscak M., Lam C.S.P., Lyon A.R., McMurray J.J.V., Mebazaa A., Mindham R., Muneretto C., Francesco Piepoli M., Price S., Rosano G.M.C., Ruschitzka F., Kathrine Skibelund A.; ESC Scientific Document Group. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J. 2021;+42(36):3599-3726. doi: 10.1093/eurheartj/ehab368.
17. Chang A., Cadaret L.M., Liu K. Machine Learning in Electrocardiography and Echocardiography: Technological Advances in Clinical Cardiology. Curr Cardiol Rep. 2020;22(12):161. doi: 10.1007/s11886-020-01416-9.
18. Adedinsewo D., Carter R.E., Attia Z., Johnson P., Kashou A.H., Dugan J.L., Albus M., Sheele J.M., Bellolio F., Friedman P.A., Lopez-Jimenez F., Noseworthy P.A. Artificial Intelligence-Enabled ECG Algorithm to Identify Patients With Left Ventricular Systolic Dysfunction Presenting to the Emergency Department With Dyspnea. Circ Arrhythm Electrophysiol. 2020;13(8):e008437. doi: 10.1161/CIRCEP.120.008437.
19. Attia Z.I., Kapa S., Yao X., Lopez-Jimenez F., Mohan T.L., Pellikka P.A., Carter R.E., Shah N.D., Friedman P.A., Noseworthy P.A. Prospective validation of a deep learning electrocardiogram algorithm for the detection of left ventricular systolic dysfunction. J Cardiovasc Electrophysiol. 2019;30(5):668-674. doi: 10.1111/jce.13889.
20. O'Neal W.T., Mazur M., Bertoni A.G., Bluemke D.A., Al-Mallah M.H., Lima J.A.C., Kitzman D., Soliman E.Z. Electrocardiographic Predictors of Heart Failure With Reduced Versus Preserved Ejection Fraction: The Multi-Ethnic Study of Atherosclerosis. J Am Heart Assoc. 2017;6(6):e006023. doi: 10.1161/JAHA.117.006023.
21. Attia Z.I., Kapa S., Lopez-Jimenez F., McKie P.M., Ladewig D.J., Satam G., Pellikka P.A., Enriquez-Sarano M., Noseworthy P.A., Munger T.M., Asirvatham S.J., Scott C.G., Carter R.E., Friedman P.A. Screening for cardiac contractile dysfunction using an artificial intelligence-enabled electrocardiogram. Nat Med. 2019;25(1):70-74. doi: 10.1038/s41591-018-0240-2.
22. Baldoumas G.; Peschos D.; Tatsis G.; Chronopoulos S.K.; Christofilakis V.; Kostarakis P.; Varotsos P.; Sarlis N.V.; Skordas E.S.; Bechlioulis A.; Michalis L.K.; Naka K.K. A Prototype Photoplethysmography Electronic Device that Distinguishes Congestive Heart Failure from Healthy Individuals by Applying Natural Time Analysis. Electronics. 2019; 8(11):1288. 1288.doi:10.3390/electronics8111288