Статья
Эритроциты и NO: факты, гипотезы взаимодействия, перспективы для диагностики и терапии сердечно-сосудистых заболеваний
Данный обзор посвящен рассмотрению взаимосвязей между эритроцитами и оксидом азота, роли клеток красной крови в качестве участников вазорегуляции. Представлены результаты исследований, касающихся изучения физиологического происхождения вазоактивного NO в условиях гипоксии, источников оксида азота, связанного с эритроцитами. Проанализированы данные о влиянии NO на деформируемость эритроцитов. Изложена гипотеза недостаточной биодоступности NO при хранении крови, обусловленной дегенеративными изменениями в эритроцитах (повышение уровня свободного гемоглобина и микрочастиц из клеток красной крови). Приведены результаты оценки измерения уровня гемоглобина, связанного с NO, с помощью спектроскопии комбинационного рассеяния света. Определены перспективы в отношении диагностики и терапии определения и изменения уровня эритроцит-производного NO и АТФ.
1. Allen B. W., Piantadosi C. A. How do red blood cells cause hypoxic vasodilation? The SNO-hemoglobin paradigm // Am. J. Physiol. Heart Circ. Physiol. 2006. Vol. 291. P. H1507–H1512.
2. Simanonok J. P. Non-ischemic hypoxia of the arterial wall is a primary cause of atherosclerosis // Med. Hypotheses. 1996. Vol. 46, N 2. P. 155–161.
3. Becker R. C. The role of blood viscosity in the development and progression of coronary artery disease // Cleve. Clin. J. Med. 1993. Vol. 60, N 5. P. 353–358.
4. Harris W. S., von Schacky C. The omega-3 index: a new risk factor for death from coronary heart disease? // Prev. Med. 2004. Vol. 39. P. 212–220.
5. Smith S. C., Allen J., Blair S. N., Bonow R. O., Brass L. M., Fonarow G. C., et al. AHA / ACC guidelines for secondary prevention for patients with coronary and other atherosclerotic vascular disease: 2006 update // Circulation. 2006. Vol. 11, N 3. P. 2363–2372.
6. Tziakas D. N., Kaski J. C., Chalikias G. K., Romero, Fredericks S., Tentes I. K., Kortsaris A. X., Hatseras D. I., Holt D. W. Total cholesterol content of erythrocyte membranes is increased in patients with acute coronary syndrome: a new marker of clinical instability? // J. Am. Coll. Cardiol. 2007. Vol. 49, N 21. P. 2081–2089.
7. Allen L. A., Felker G. M., Mehra M. R. et al. Validation and potential mechanisms of red cell distribution width as a prognostic marker in heart failure // J. Card. Fail. 2010. Vol. 16. P. 230–238.
8. Dabbah S., Hammerman H., Markiewicz W., Aronson D. Relation between red cell distribution width and clinical outcomes after acute myocardial infarction // Am. J. Cardiol. 2010. Vol. 105, N 3. P. 312–317.
9. Sangoi M. B., da Silva S. H., da Silva J. E., Moresco R. N. Relation between red blood cell distribution width and mortality after acute myocardial infarction // Am. J. Cardiol. 2010. Vol. 105, N 3. P. 313–317.
10. Uyarel H., Ergelen M., Cicek G. et al. Red cell distribution width as a novel prognostic marker in patients undergoing primary angioplasty for acute myocardial infarction // Coron. Artery Dis. 2011. Vol. 22, N 3. P. 138–144.
11. Wen Y. High red blood cell distribution width is closely associated with risk of carotid artery atherosclerosis in patients with hypertension // Exp. Clin. Cardiol. 2010. Vol. 15, N 3. P. 37–40.
12. Гогин Г. Г. Гипертоническая болезнь и ассоциированные болезни системы кровообращения: основы патогенеза, динамика и выбор лечения / Г. Г. Гогин, Е. Г. Гогин. – М.: Ньюдиамед, 2006. – 254 с.
13. Engelhardt H., Gaub H., Sackmann E. Viscoelastic properties of erythrocyte membranes in high-frequency electric fields // Nature (London). 1984. Vol. 307, N 5949. P. 378–380.
14. Kawakami S., Kaibara M., Kawamoto Y., Yamanaka K. Rheological approach to the analisis of blood coagulation in endotelial cellcoated tubes: activation of the intrinsic reactionon the erythrocyte surface // Biorheology. 1995. Vol. 32, N 5. P. 521–536.
15. Кручинина М. В. Есть ли различия в оптических параметрах крови, связанные со степенью артериальной гипертензии? / М. В. Кручинина [и др.] // Атеросклероз. – 2014. – Т. 10, № 1. – С. 22–31.
16. Kreuzer F., Hoofd L. Facilitated diffusion of oxygen: possible significance in blood and muscle // Oxygen Transp. Tissue. 5 Proc. Meet. Dortmund. 1982. P. 3–21.
17. Villar I. C., Francis S., Webb A., Hobbs A. J., Ahluwalia A. Novel aspects of endothelium-dependent regulation of vascular tone // Kidney Int. 2006. Vol. 70. P. 840–853.
18. Walford G., Loscalzo J. Nitric oxide in vascular biology // J. Thromb. Haemost. 2003. Vol. 1. P. 2112–2118.
19. Alexander J. T., El-Ali A. M., Newman J. L., Karatela S., Predmore B. L., Lefer D. J., Sutliff R. L., Roback J. D. Red blood cells stored for increasing periods produce progressive impairments in nitric oxide–media ted vasodilation // Transfusion. 2013. Vol. 53. P. 2619–2628.
20. Gow A. J., Luchsinger B. P., Pawloski J. R., Singel D. J., Stamler J. S. The oxyhemoglobin reaction of nitric oxide // Proc. Natl. Acad. Sci. USA. 1999. Vol. 96. P. 9027–9032.
21. Jia L., Bonaventura C., Bonaventura J., Stamler J. S. S-nitrosohaemoglobin: A dynamic activity of blood involved in vascular control // Nature. 1996. Vol. 380. P. 221–226.
22. Kelm M., Feelisch M., Deussen A., Schrader J., Strauer B. E. The role of nitric-oxide in the control of coronary vascular tone in relation to partial oxygen-pressure, perfusion-pressure, and flow // J. Cardiovasc. Pharmacol. 1991. Vol. 17. P. S95–S99.
23. Hakim T. S., Sugimori K., Camporesi E. M., Anderson G. Halflife of nitric oxide in aqueous solutions with and without haemoglobin // Physiol. Meas. 1996. Vol. 17. P. 267–277.
24. Kelm M., Schrader J. Control of coronary vascular tone by nitricoxide // Circ. Res. 1990. Vol. 66. P. 1561–1575.
25. Diesen D. L., Hess D. T., Stamler J. S. Hypoxic vasodilation by red blood cells evidence for an s-nitrosothiol-based signal // Circ. Res. 2008. Vol. 103. P. 545–553.
26. Doyle M. P., Pickering R. A., De Weert T. M., Hoekstra J. W., Pater D. Kinetics and mechanism of the oxidation of human deoxyhemoglobin by nitrites // J. Biol. Chem. 1981. Vol. 256. P. 12393–12398.
27. Gladwin M. T., Shelhamer J. H., Schechter A. N., Pease-Fye M. E., Waclawiw M. A., Panza J. A., Ognibene F. P., Cannon R. O. Role of circulating nitrite and s-nitrosohemoglobin in the regulation of regional blood flow in humans // Proc. Natl. Acad. Sci. USA. 2000. Vol. 97. P. 11482–11487.
28. Lauer T., Preik M., Rassaf T., Strauer B. E., Deussen A., Feelisch M., Kelm M. Plasma nitrite rather than nitrate reflects regional endothelial nitric oxide synthase activity but lacks intrinsic vasodilator action // Proc. Natl. Acad. Sci. USA. 2001. Vol. 98. P. 12814–12819.
29. Cosby K., Partovi K. S., Crawford J. H., Patel R. P., Reiter C. D., Martyr S., Yang B. K., Waclawiw M. A., Zalos G., Xu X. L., Huang K. T., Shields H., Kim-Shapiro D. B., Schechter A. N., Cannon R. O., Gladwin M. T. Nitrite reduction to nitric oxide by deoxyhemoglobin vasodilates the human circulation // Nat. Med. 2003. Vol. 9. P. 1498–1505.
30. Bogle R. G., Coade S. B., Moncada S., Pearson J. D., Mann G. E. Bradykinin and ATP stimulate l-arginine uptake and nitric-oxide release in vascular endothelial-cells // Biochem. Biophys. Res. Conmun. 1991. Vol. 180. P. 926–932.
31. Dull R. O., Tarbell J. M., Davies P. F. Mechanisms of flowmediated signal transduction in endothelial cells: kinetics of ATP surface concentrations // J. Vasc. Res. 1992. Vol. 29. P. 410–419.
32. Bergfeld G. R., Forrester T. Release of ATP from human erythrocytes in response to a brief period of hypoxia and hypercapnia // Cardiovasc. Res. 1992. Vol. 26. P. 40–47.
33. Miseta A., Bogner P., Berenyi M., Kellermayer M., Galambos C., Wheatley D., Cameron I. Relationship between cellular ATP, potassium, sodium and magnesium concentrations in mammalian and avian erythrocytes // Biochem. Biophys. Acta. 1993. Vol. 1175. P. 133–139.
34. Sprague R. S., Ellsworth M. L., Stephenson A. H., Lonigro A. J., Andrew J. ATP: the red blood cell link to NO and local control of the pulmonary circulation // Am. J. Physiol. 1996. Vol. 271, N 6(2). P. H2717–H2722.
35. Sprague R. S., Stephenson A. H., Dimmitt R. A., Weintraub N. A., Branch C. A., Mc Murdo L. A. J. Effect of L-NAME on pressure-flow relationships in isolated rabbit lungs: role of red blood cells // Am. J. Physiol. Heart Circ. Physiol. 1995. Vol. 269. P. H1941–H1948.
36. Allsup D. J., Boarder M. R. Comparison of P2 purinergic receptors of aortic endothelial cell with those of adrenal medulla: evidence for heterogeneity of receptor subtype and of inositol phosphate response // Mol. Pharm. 1990. Vol. 38. P. 84–91.
37. Houston D. A., Burnstock G., Vanhoutte P. M. Different P2-purinergic receptor subtypes of endothelium and smooth muscle in canine blood vessels // J. Pharmacol. Exp. Ther. 1987. Vol. 241. P. 501–506.
38. Liu S. F., Mc Cormack D. G., Evans T. W., Barnes P. J. Characterization and distribution of P2-purinoreceptor subtypes in rat pulmonary vessels // J. Pharmacol. Exp. Ther. 1989. Vol. 251. P. 1204–1210.
39. Motte S., Perotton S., Boeynaems J. M. Heterogeneity of ATP receptors in aortic endothelial cells: involvement of P2y and P2u receptors in inositol phosphate response // Circ. Res. 1993. Vol. 72. P. 504–510.
40. Dazel H. H., Westfall D. P. Receptors for adenine nucleotides and nucleosides: subclassification, distribution and molecular characterization // Pharmacol. Rev. 1994. Vol. 46. P. 449–466.
41. Kennedy C., Delbro D., Burnstock G. P2-purinoreceptors mediate both vasodilation (via the endothelium) and vasoconstriction of the isolated reat femoral artery // Eur. J. Pharmacol. 1985. Vol. 107. P. 161–168.
42. Forsberg E., Feuerstein G., Shohami E., Pollard H. Adenosine triphosphate stimulates inositol phospholipid metabolism and prostacyclin formation in adrenal medullary endothelial cells by means of P2-purinergic receptors // Proc. Natl. Acad. Sci. USA. 1987. Vol. 84. P. 5630–5634.
43. Hassessian H., Burnstock G. Interacting roles of nitric oxide and ATP in the pulmonary circulation of the rat // Br. J. Pharmacol. 1995. Vol. 114. P. 846–850.
44. Dietrich H. H., Ellsworth M. L., Sprague R. S., Dacey R. G. Jr. Red blood cell regulation of microvascular tone through adenosine triphosphate // Am. J. Physiol. Heart Circ. Physiol. 2000. Vol. 278. P. H1294–H1298.
45. Ellsworth M. L., Ellis C. G., Goldman D., Stephenson A. H., Dietrich H. H., Sprague R. S. Erythrocytes: oxygen sensors and modulators of vascular tone // Physiology. 2009. Vol. 24. P. 107–116.
46. Faris A., Spence D. M. Measuring the simultaneous effects of hypoxia and deformation on ATP release from erythrocytes // Analyst. 2008. Vol. 133. P. 678–682.
47. Burnstock G. Local-Control of blood-pressure by purines // Blood Vessels. 1987. Vol. 24. P. 156–160.
48. Oblak T. D., Root P., Spence D. M. Fluorescence monitoring of ATP-stimulated, endothelium-derived nitric oxide production in channels of a poly(dimethylsiloxane)-based microfluidic device // Anal. Chem. 2006. Vol. 78. P. 3193–3197.
49. Cerecedo D., Stock R., Gonzalez S., Reyes E., Mondragon R. Modification of actin, myosin and tubulin distribution during cytoplasmic granule movements associated with platelet adhesion // Haematologica. 2002. Vol. 87. P. 1165–1176.
50. Kovacsovics T. J., Hartwig J. H. Thrombin-induced GPIb-IX centralization on the platelet surface requires actin assembly and myosin II activation // Blood. 1996. Vol. 87. P. 618–629.
51. Packham M. A. Role of platelets in thrombosis and hemostasis // Can. J. Physiol. Pharm. 1994. Vol. 72. P. 278–284.
52. Wang G.-R., Zhu Y., Halushka P. V., Lincoln T. M., Mendelsohn M. E. Mechanism of platelet inhibition by nitric oxide: in vivo phosphorylation of thromboxane receptor by cyclic GMP dependent protein kinase // Proc. Natl. Acad. Sci. USA. 1998. Vol. 95. P. 4888–4893.
53. Freedman J. E., Loscalzo J., Barnard M. R., Alpert C., Keaney J. F., Michelson A. D. Nitric oxide released from activated platelets inhibits platelet recruitment // J. Clin. Invest. 1997. Vol. 100. P. 350–356.
54. Hall D. A., Hourani S. M. O. Effects of analogs of adenine nucleotides on increases in intracellular calcium mediated by P2 Tpurinoceptors on human blood platelets // Br. J. Pharmacol. 1993. Vol. 108. P. 728–733.
55. Von Kugelgen I., Wetter A. Molecular pharmacology of P2Yreceptors // Naunyn-Schmiedeberg’s Arch. Pharmacol. 2000. Vol. 362. P. 310–323.
56. Takano S., Kimura J., Matsuoka I., Ono T. No requirement of P2X1 purinoceptors for platelet aggregation // Eur. J. Pharmacol. 1999. Vol. 372. P. 305–309.
57. Karunarathne W., Ku C. J., Spence D. M. The dual nature of extracellular ATP as a concentration-dependent platelet P2X1 agonist and antagonist // Integr. Biol. 2009. Vol. 1. P. 655–663.
58. Nesbitt W. S., Kulkarni S., Giuliano S., Goncalves I., Dopheide S. M., Yap C. L., Harper I. S., Salem H. H., Jackson S. P. Distinct glycoprotein Ib/V/IX and integrin alpha(IIb)beta(3)-dependent calcium signals cooperatively regulate platelet adhesion under flow // J. Biol. Chem. 2002. Vol. 277. P. 2965–2972.
59. Sprague R. S., Ellsworth M. L., Stephenson A. H., Kleinhenz M. E., Lonigro A. J. Deformation-induced ATP release from red blood cells requires CFTR activity // Am. J. Physiol. 1998. Vol. 275. P. H1726–H1732.
60. Genes L. I., Tolan N. V., Hulvey M. K., Martin R. S., Spence D. M. Addressing a vascular endothelium array with blood components using underlying microfluidic channels // Lab. Chip. 2007. Vol. 7. P. 1256–1259.
61. Meyer J. A., Froelic J. M., Reid G. E., Karunarathne W., Spence D. M. Metal-activated C-peptide facilitates glucose clearance and the release of a nitric oxide stimulus via the glut1 transporter // Diabetologia. 2008. Vol. 51. P. 175–182.
62. Meyer J. A., Subasinghe W., Sima Anders A. F., Keltner Z., Reid G. E., Daleke D. L., Spence D. M. Zinc-activated c-peptide resistance to the type 2 Diabetic erythrocyte is associated with hyperglycemia-induced phosphatidylserine externalization and reversed by metformin // Mol. Biosyst. 2009. Vol. 5. P. 1157–1162.
63. Halpin S. T., Spence D. M. Direct plate-reader measurement of nitric oxide released from hypoxic erythrocytes flowing through a microfluidic device // Anal. Chem. 2010. Vol. 82. P. 7492–7497.
64. Bor-Kucukatay M., Wenby R. B., Meiselman H. J., Baskurt O. K. Effects of nitric oxide on red blood cell deformability // Am. J. Physiol. Heart Circ. Physiol. 2003. Vol. 284. P. H1577–H1584.
65. Starzyk D., Korbut R., Gryglewski R. J. Effects of nitric oxide and prostacyclin on deformability and aggregability of red blood cells of rats ex vivo and in vitro // J. Physiol. Pharmacol. 1999. Vol. 50. P. 629–637.
66. Bateman R. M., Jagger J. E., Sharpe M. D., Ellsworth M. L., Mehta S., Ellis C. G. Erythrocyte deformability is a nitric oxidemediated factor in decreased capillary density during sepsis // Am. J. Physiol. Heart Circ. Physiol. 2001. Vol. 280. P. H2848–H2856.
67. Mesquita R., Picarra B., Saldanha C., Silva J. M. E. Nitric oxide effects on human erythrocytes structural and functional properties – An in vitro study // Clin. Hemorheo. Micro. 2002. Vol. 27. P. 137–147.
68. Garcia J. I., Seabra A. B., Kennedy R., English A. M. Nitrite and nitroglycerin induce rapid release of the vasodilator ATP from erythrocytes: Relevance to the chemical physiology of local vasodilation // J. Inorg. Biochem. 2010. Vol. 104. P. 289–296.
69. Cao Z., Bell J. B., Mohanty J. G., Nagababu E., Rifkind J. M. Nitrite enhances RBC hypoxic ATP synthesis and the release of ATP into the vasculature: a new mechanism for nitrite-induced vasodilation // Am. J. Physiol. Heart Circ. Physiol. 2009. Vol. 297. P. H1494–H1503.
70. Raththagala M., Karunarathne W., Kryziniak M., McCracken J., Spence D. M. Hydroxyurea stimulates the release of ATP from rabbit erythrocytes through an increase in calcium and nitric oxide production // Eur. J. Pharmacol. 2010. Vol. 645. P. 32–38.
71. Gladwin M. T., Schechter A. N., Ognibene F. P., Coles W. A., Reiter C. D., Schenke W. H., Csako G., Waclawiw M. A., Panza J. A., Cannon R. O. Divergent nitric oxide bioavailability in men and women with sickle cell disease // Circulation. 2003. Vol. 107. P. 271–278.
72. King S. B. The nitric oxide producing reactions of hydroxyurea // Curr. Med. Chem. 2003. Vol. 10. P. 437–452.
73. Hakim T. S. Effect of erythrocyte heat treatment on pulmonary vascular resistance // Microvasc. Res. 1994. Vol. 48, N 1. P. 13–25.
74. Ignarro L. J., Lippton H., Edwards J. C., Baricos W. H., Hyman A. L., Kadowitz P. J., Gruetter C. A. Mechanism of vascular smooth muscle relaxation by organic nitrates, nitrites, nitroprusside and nitric oxide: evidence for the involvement of S-nitrosothiols as active intermediates // J. Pharmacol. Exp. Ther. 1981. Vol. 218. P. 739–749.
75. Pawloski J. R., Stamler J. S. Nitric oxide in RBCs // Transfusion. 2002. Vol. 42. P. 1603–1609.
76. Stamler J. S., Simon D. I., Osborne J. A., Mullins M. E., Jaraki O., Michel T., Singel D. J., Loscalzo J. S-nitrosylation of proteins with nitric oxide: synthesis and characterization of biologically active com-pounds // Proc. Natl. Acad. Sci. USA. 1992. Vol. 89. P. 444–448.
77. Reynolds J. D., Ahearn G. S., Angelo M., Zhang J., Cobb F., Stamler J. S. S-nitrosohemoglobin deficiency: a mechanism for loss of physiological activity in banked blood // Proc. Natl. Acad. Sci. USA. 2007. Vol. 104. P. 17058–17062.
78. Chen K., Popel A. S. Theoretical analysis of biochemical pathways of nitric oxide release from vascular endothelial cells // Free Radic. Biol. Med. 2006. Vol. 41. P. 668–680.
79. Huang K. T., Keszler A., Patel N., Patel R. P., Gladwin M. T., Kim-Shapiro D. B., Hogg N. The reaction between nitrite and deoxyhemoglobin. Reassessment of reaction kinetics and stoichiometry // J. Biol. Chem. 2005. Vol. 280. P. 31126–31131.
80. Huang Z., Shiva S., Kim-Shapiro D. B., Patel R. P., Ringwood L. A., Irby C. E., Huang K. T., Ho C., Hogg N., Schechter A. N., Gladwin M. T. Enzymatic function of hemoglobin as a nitrite reductase that produces NO under allosteric control // J. Clin. Invest. 2005. Vol. 115. Р. 2099–2107.
81. Chen K., Piknova B., Pittman R. N., Schechter A. N., Popel A. S. Nitric oxide from nitrite reduction by hemoglobin in the plasma and erythrocytes // Nitric. Oxide. 2008. Vol. 18. P. 47–60.
82. Chen K., Pittman R. N., Popel A. S. Nitric oxide in the vasculature: where does it come from and where does it go? A quantitative perspective // Antioxid. Redox. Signal. 2008. Vol. 10. P. 1185–1198.
83. Ellsworth M. L. Red blood cell-derived ATP as a regulator of skeletal muscle perfusion // Med. Sci. Sports Exerc. 2004. Vol. 36. P. 35–41.
84. Ellsworth M. L., Forrester T., Ellis C. G., Dietrich H. H. The erythrocyte as a regulator of vascular tone // Am. J. Physiol. 1995. Vol. 269, N 6 (2). P. H2155–H2161.
85. Zhu H., Zennadi R., Xu B. X., Eu J. P., Torok J. A., Telen M. J., Mc Mahon T. J. Impaired adenosine-5′-triphosphate release from red blood cells promotes their adhesion to endothelial cells: a mechanism of hypoxemia after transfusion // Crit. Care Med. 2011. Vol. 39. P. 2478–2486.
86. Roback J. D. Vascular effects of the red cell storage lesion // Hematology Am. Soc. Hematol. Educ. Program. 2011. P. 475–479.
87. Kim-Shapiro D. B., Lee J., Gladwin M. T. Storage lesion: role of red blood cell breakdown // Transfusion. 2011. Vol. 51. P. 844–851.
88. Reiter C. D., Wang X., Tanus-Santos J. E., Hogg N., Cannon R. O. 3rd, Schechter A. N., Gladwin M. T. Cell-free hemoglobin limits nitric oxide bioavailability in sickle-cell disease // Nat. Med. 2002. Vol. 8. P. 1383–1389.
89. Rother R. P., Bell L., Hillmen P., Gladwin M. T. The clinical sequelae of intravascular hemolysis and extracellular plasma hemoglobin: a novel mechanism of human disease // JAMA. 2005. Vol. 293. P. 1653–1662.
90. Donadee C., Raat N. J., Kanias T., Tejero J., Lee J. S., Kelley E. E., Zhao X., Liu C., Reynolds H., Azarov I., Frizzell S., Meyer E. M., Donnenberg A. D., Qu L. Triulzi D., Kim-Shapiro D. B., Gladwin M. T. Nitric oxide scavenging by red blood cell microparticles and cell-free hemoglobin as a mechanism for the red cell storage lesion // Circulation. 2011. Vol. 124. P. 465–476.
91. Glynn S. A. The red blood cell storage lesion: a method to the madness // Transfusion. 2010. Vol. 50. P. 1164–1169.
92. Kanias T., Gladwin M. T. Nitric oxide, hemolysis, and the red blood cell storage lesion: interactions between transfusion, donor, and recipient // Transfusion. 2012. Vol. 52. P. 1388–1392.
93. Roback J. D., Neuman R. B., Quyyumi A., Sutliff R. Insufficient nitric oxide bioavailability: a hypothesis to explain adverse effects of red blood cell transfusion // Transfusion. 2011. Vol. 51. P. 859–866.
94. Spinella P. C., Doctor A., Blumberg N., Holcomb J. B. Does the storage duration of blood products affect outcomes in critically ill patients? // Transfusion. 2011. Vol. 51. P. 1644–1650.
95. Yu B., Lei C., Baron D. M., Steinbicker A. U., Bloch K. D., Zapol W. M. Diabetes augments and inhaled nitric oxide prevents the adverse hemodynamic effects of transfusing syngeneic stored blood in mice // Transfusion. 012. Vol. 52. P. 1410–1422.
96. Crawford J. H., Isbell T. S., Huang Z., Shiva S., Chacko B. K., Schechter A. N., Darley-Usmar V. M., Kerby J. D., Lang J. D. Jr, Kraus D., Ho C., Gladwin M. T., Patel R. P. Hypoxia, red blood cells, and nitrite regulate NO-dependent hypoxic vasodilation // Blood. 2006. Vol. 107. P. 566–574.
97. Bunn H. F., Nathan D. G., Dover G. J., Hebbel R. P., Platt O. S., Rosse W. F., Ware R. E. Pulmonary hypertension and nitric oxide depletion in sickle cell disease // Blood. 2010. Vol. 116. P. 687–692.
98. Stapley R., Owusu B. Y., Brandon A., Cusick M., Rodriguez C., Marques M. B., Kerby J. D., Barnum S. R., Weinberg J. A., Lancaster J. R. Jr, Patel R. P. Erythrocyte storage increases rates of NO and nitrite scavenging: implications for transfusionrelated toxicity // Biochem. J. 2012. Vol. 446. P. 499–508.
99. Squadrito G. L., Pry W. A. The formation of peroxynitrite in vivo from nitric oxide and superoxide // Chem. Biol. Interact. 1995. Vol. 96. P. 203–206.
100. Stamler J. S., Jia L., Eu J. P. et al. Blood flow regulation by S-nitrosohemoglobin in the physiological oxygen gradient // Science. 1997. Vol. 276, N 5321. P. 2034–2037.
101. Zinchuk V., Borisiuk V. The effect of NO synthase inhibition on blood oxygen-carrying function during hyperthermia in rats // Res. Physiol. 1998. Vol. 113, N 1. P. 39–45.
102. Зинчук В. В. Эффект ингибирования NO-синтазы на кислородтранспортную функцию крови при лихорадке у кроликов / В. В. Зинчук, М. В. Борисюк // Рос. физиол. журн. им. И. М. Сеченова. – 1997. – Т. 83, № 4. – С. 111–116.
103. Зинчук В. В. Факторный анализ параметров кислородтранспортной функции крови и перекисного окисления липидов в условиях ингибирования NO-синтазы при лихорадке у кроликов / В. В. Зинчук // Весці. АН РБ. Сер. бял. нав. – 1997. – № 2. – С. 89–93.
104. Caramelo C., Riesco A., Outeirino J. et al. Effects of nitric oxide on red blood cells: changes in erythrocyte resistance to hypotonic hemolysis and potassium efflux by experimental maneuvers thet decrease nitric oxide // Biochem. Biophys. Res. Commun. 1994. Vol. 199, N 2. P. 447–454.
105. Bozzo J., Hernandez M. R., Galan A. M. et al. Antiplatelet effects of sodium nitroprusside in flowing human blood: studies under normoxic and hypoxic conditions // Thromb. Res. 2000. Vol. 97, N 4. P. 217–225.
106. Walter R., Mark M., Reinhart W. H. Pharmacological concentrations of arginine influence human whole blood viscosity independent of nitric oxide synthase activity in vitro // Biochem. Biophys. Res. Commun. 2000. Vol. 269, N 3. P. 687–691.
107. Carroll J., Raththagala M., Subasinghe W., Baguzis S., Oblak T. D. A., Root P., Spence D. An altered oxidant defense system in red blood cells affects their ability to release nitric oxidestimulating ATP // Mol. Bio. Syst. 2006. Vol. 2. P. 305–311.
108. Sprague R. S., Stephenson A. H., Bowles E. A., Stumpf M. S., Lonigro A. J. Reduced expression of Gi in erythrocytes of humans with type 2 diabetes is associated with impairment of both cAMP generation and ATP release // Diabetes. 2006. Vol. 55. P. 3588–3593.
109. Rodnenkov O. V., Luneva O. G., Ulyanova N. A., Maksimov G. V., Rubin A. B., Orlov S. N., Chazov E. I. Erythrocyte membrane fluidity and haemoglobin haemo porphyrin conformation: features revealed in patients with heart failure // Pathophysiology. 2005. Vol. 11, N 4. P. 209–213.