Статья
Функциональная многогранность липопротеинов высокой плотности: поиск золотой середины
Настоящий обзор посвящен анализу зависимости между содержанием в плазме крови холестерина липопротеинов высокой плотности (ХС ЛПВП) и риском заболеваний, связанных с атеросклерозом. Рассмотрено клиническое значение крайне высоких концентраций ХС ЛПВП и их вклад в атеропротективные свойства этих липопротеинов. Поскольку научные дискуссии относительно роли уровня ХС ЛПВП в детерминации риска атеросклеротических заболеваний продолжаются до сих пор, в обзоре представлены и проанализированы доводы ведущих специалистов как «за», так и «против» новых взглядов на ЛПВП. Существенное внимание уделено анализу возможных причин и механизмов проатерогенных эффектов ЛПВП, обнаруживаемых у лиц с очень высоким содержанием ХС ЛПВП, которые изучаются с помощью методов протеомики и метаболомики. Обсуждается вопрос, все ли субпопуляции ЛПВП обладают одинаковым антиатерогенным потенциалом или становятся одинаково проатерогенными, в какой степени биологическая активность ЛПВП определяется вариациями их субфракционного спектра. Рассматриваются принципы разработки доступного метода оценки функциональной активности ЛПВП.
1. Перова Н.В. Атеромаркеры липопротеинов высокой плотности. Ч. I. Липопротеины высокой плотности: структура, состав, физико-химические и физиологические антиатерогенные свойства, их механизмы и маркеры (обзор литературы). Профилакт. медицина, 2017 (3): 47–54. doi: 10.17116/profmed201720347-54
2. Перова Н.В. Атеромаркеры липопротеинов высокой плотности. Ч. II. Нарушения состава, структуры, функций липопротеинов высокой плотности как причина их атерогенных свойств (обзор литературы). Профилакт. медицина, 2017; 20 (4): 37–44. doi: 10.17116/profmed201720437-44
3. Chapman M.J., Ginsberg H.N., Amarenco P. et al. Triglyceride-rich lipoproteins and high-density lipoprotein cholesterol in patients at high risk of cardiovascular disease: evidence and guidance for management. Eur. Heart J., 2011; 32 (11): 1345–1361. doi: 10.1093/eurheartj/ehr112
4. Badimon L., Vilahur G. LDL-cholesterol versus HDLcholesterol in the atherosclerotic plaque: inflammatory resolution versus thrombotic chaos. Ann. N. Y. Acad. Sci., 2012; 1254: 18–32. doi: 10.1111/j.1749-6632.2012.06480.x
5. Weissglas-Volkov D., Pajukanta P. Genetic causes of high and low serum HDL-cholesterol. J. Lipid Res., 2010; 51: 2032–2057. doi: 10.1194/jlr.R004739
6. Vaisar T., Pennathur S., Green P.S. et al. Shotgun proteomics implicates protease inhibition and complement activation in the anti-inflammatory properties of HDL. J. Clin. Invest., 2007; 117: 746–756. doi: 10.1172/JCI26206
7. Shah A.S., Tan L., Long J.L., Davidson W.S. Proteomic diversity of high density lipoproteins: our emerging understanding of its importance in lipid transport and beyond. J. Lipid Res., 2013; 54 (10): 2575–2585. doi: 10.1194/jlr.R035725
8. Gordon D.J., Probstfield J.L., Garrison R.J. et al. High density lipoprotein cholesterol and cardiovascular disease. Four Prospective American Studies. Circulation, 1989; 79: 8–15.
9. Barter P., Genest J. HDL cholesterol and ASCVD risk stratification: A debate. Atherosclerosis, 2019; 283: 7–12. doi: 10.1016/j.atherosclerosis.2019.01.001
10. Hoefer I.E., Steffens S., Ala-Korpela M. et al. Novel methodologies for biomarker discovery in atherosclerosis. Eur. Heart J., 2015; 36: 2635–2642. doi: 10.1093/eurheartj/ehv236
11. di Angelantonio E., Sarwar N., Perry P. et al. Major lipids, apolipoproteins, and risk of vascular disease. JAMA, 2009; 302 (18): 1993–2000.
12. Bowe B., Xie Y., Xian H. et al. High density lipoprotein cholesterol and the risk of all-cause mortality among US Veterans. Clin. J. Am. Soc. Nephrol., 2016; 11 (10): 1784–1793. doi: 10.2215/CJN.00730116
13. März W., Kleber M.E., Scharnag H. et al. HDL cholesterol: reappraisal of its clinical relevance. Clin. Res. Cardiol., 2017; 106: 663–675. doi: 10.1007/s00392-017-1106-1.
14. Madsen C.M., Varbo A., Nordestgaard B.G. Extreme high high-density lipoprotein cholesterol is paradoxically associated with high mortality in men and women: two prospective cohort studies. Eur. Heart J., 2017; 38: 2478–2486.
15. Allard-Ratick M.P., Kindya B.R., Khambhati J. et al. HDL: Fact, fiction, or function? HDL cholesterol and cardiovascular risk. Eur. J. Prev. Cardiol., 2021; 28 (2): 166–173. doi: 10.1177/2047487319848214
16. Kosmas C.E., Martinez I., Sourlas A. et al. Highdensity lipoprotein (HDL) functionality and its relevance to atherosclerotic cardiovascular disease. Drugs in Context, 2018; 7: 212525. doi: 10.7573/dic.212525
17. Voight B.F., Peloso G.M., Orho-Melander M. et al. Plasma HDL cholesterol and risk of myocardial infarction: a Mendelian randomization study. Lancet, 2012; 380: 572–580. doi: 10.1016/S0140-6736(12)60312-2
18. Kingwell B.A., Chapman M.J., Kontush A. et al. HDL-targeted therapies: progress, failures and future. Nat. Rev. Drug Discov., 2014; 13: 445–464.
19. Rader D.J., Tall A.R. Is it time to revise the HDL cholesterol hypothesis? Nat. Med., 2012; 18: 1344–1346. https://doi.org/10.1038/nm.2937
20. Kratzer A., Giral H., Landmesser U. High-density lipoproteins as modulators of endothelial cell functions: alterations in patients with coronary heart disease. Cardiovasc. Res., 2014; 103: 350–361. doi: 10.1093/cvr/cvu139
21. Fazio S., Linton M.R.F. Elevated high-density lipoprotein (HDL) levels due to hepatic lipase mutations do not reduce cardiovascular risk: another strike against the HDL dogma. J. Clin. Endocrionol. Metab., 2009; 94 (4): 1081–1083. doi: 10.1210/jc.2009-0344
22. Frikke-Schmidt R., Nordestgaard B., Stene M.C.A. et al. Association of loss-of-function mutations in the ABCA1 gene with high-density lipoprotein cholesterol levels and risk of ischemic heart disease. JAMA, 2008; 299: 2524–2532. doi: 10.1001/jama.299.21.2524
23. Teslovich T.M., Musunuru K., Smith A.V. et al. Biological, clinical and population relevance of 95 loci for blood lipids. Nature, 2010; 466: 707–713.
24. Haase C.L., Tybjærg-Hansen A., Ali Qayyum A. et al. LCAT, HDL cholesterol and ischemic cardiovascular disease: A mendelian randomization study of HDL cholesterol in 54,500 individuals. J. Clin. Endocrinol. Metab., 2012; 97: E248–E256.
25. Zanoni P., Khetarpal S.A., Larach D.B. et al. Rare variant in scavenger receptor BI raises HDL cholesterol and increases risk of coronary heart disease. Science, 2016; 351 (6278): 1166–1171. doi: 10.1126/science.aad3517
26. Mineo C., Shaul P.W. Functions of scavenger receptor class B, type I in atherosclerosis. Curr. Opin. Lipidol., 2012; 23: 487–493. doi: 10.1097/MOL.0b013e328357ba61
27. Rigotti A., Miettinen H.E., Krieger M. The role of the high-density lipoprotein receptor SR-BI in the lipid metabolism of endocrine and other tissues. Endocr. Rev., 2003; 24: 357–387. doi: 10.1210/er.2001-0037
28. Ueda Y., Gong E., Royer L. et al. Relationship between expression levels and atherogenesis in scavenger receptor class B, type I transgenics. J. Biol. Chem., 2000; 275: 20368–20373. doi: 10.1074/jbc.M000730200
29. Kozarsky K.F., Donahee M.H., Glick J.M. et al. Gene transfer and hepatic overexpression of the HDL receptor SR-BI reduces atherosclerosis in the cholesterol-fed LDL receptor-deficient mouse. Arterioscler. Thromb. Vasc. Biol., 2000; 20 (3): 721–727. doi: 10.1161/01.atv.20.3.721
30. Brundert M., Ewert A., Heerenet J. et al. Scavenger receptor class B type I mediates the selective uptake of high-density lipoprotein-associated cholesteryl ester by the liver in mice. Arterioscler. Thromb. Vasc. Biol., 2005; 25: 143–148. doi: 10.1161/01.ATV.0000149381.16166.c6
31. Huszar D., Varban M.L., Rinninger F. et al. Increased LDL cholesterol and atherosclerosis in LDL receptordeficient mice with attenuated expression of scavenger receptor B1. Arterioscler. Thromb. Vasc. Biol., 2000; 20: 1068–1073. doi: 10.1161/01.atv.20.4.1068
32. Braun A., Trigatti B.L., Post M.J. et al. Loss of SR-BI expression leads to the early onset of occlusive atherosclerotic coronary artery disease, spontaneous myocardial infarctions, severe cardiac dysfunction, and premature death in apolipoprotein E-deficient mice. Circ. Res., 2002; 90: 270–276. doi: 10.1161/hh0302.104462
33. van Eck M., Twisk J., Hoekstra M. et al. Differential effects of scavenger receptor BI deficiency on lipid metabolism in cells of the arterial wall and in the liver. J. Biol. Chem., 2003; 278: 23699–23705. doi: 10.1074/jbc.M211233200
34. Navab M., Reddy S.T., van Lenten B.J., Fogelman A.M. HDL and cardiovascular disease: atherogenic and atheroprotective mechanisms. Nat. Rev. Cardiol., 2011; 8 (4): 222–232. doi: 10.1038/nrcardio.2010.222
35. Huang Y., Wu Z., Riwanto M. et al. Myeloperoxidase, paraoxonase-1, and HDL form a functional ternary complex. J. Clin. Invest., 2013; 123 (9): 3815–3828. doi: 10.1172/JCI67478
36. Carnuta M.G., Stancu C.S., Toma L. et al. Dysfunctional high- density lipoproteins have distinct composition, diminished anti- inflammatory potential and discriminate acute coronary syndrome from stable coronary artery disease patients. Sci. Rep., 2017; 7 (1): 7295. doi: 10.1038/s41598-017-07821-5
37. Fisher E.A., Feig J.E., Hewing B. High-density lipoprotein function, dysfunction, and reverse cholesterol transport. Arterioscler. Thromb. Vasc. Biol., 2012; 32 (12): 2813–2820. doi: 10.1161/ATVBAHA.112.300133
38. Smith J.D. Myeloperoxidase, inflammation, and dysfunctional HDL. J. Clin. Lipidol., 2010; 4 (5): 382–388. doi: 10.1016/j.jacl.2010.08.007
39. Kontush A., Lhomme M., Chapman M.J. Unraveling the complexities of the HDL lipidome. J. Lipid Res., 2013; 54 (11): 2950–2963. doi: 10.1194/jlr.R036095
40. Wijtske A., von Eckardstein A. High-density lipoproteins. Multifunctional but vulnerable protections from atherosclerosis. Circ. J., 2013; 77 (10): 2432–2448. doi: 10.1253/circj.cj-13-1025
41. Gordon S.M., Remaley A.T. High density lipoproteins are modulators of protease activity: implications in inflammation, complement activation, and atherothrombosis. Atherosclerosis, 2017; 259: 104–113. doi: 10.1016/j.atherosclerosis.2016.11.015
42. Oravec S., Dostal E., Dukat A. et al. HDL subfractions analysis: a new laboratory diagnostic assay for patients with cardiovascular diseases and dyslipoproteinemia. Neuro. Endocrionol. Lett., 2011; 32 (4): 502–509.
43. van der Steeg W.A., Holme I., Boekholdt S.M. et al. High-density lipoprotein cholesterol, high-density lipoprotein particle size, and apolipoprotein A-I: significance for cardiovascular risk: the IDEAL and EPICNorfolk studies. J. Am. Coll. Cardiol., 2008; 51 (6): 634-642. doi: 10.1016/j.jacc.2007.09.060
44. Camont L., Chapman J.M., Kontush A. Biological activities of HDL subpopulations and their relevance to cardiovascular disease. Trends Mol. Med., 2011; 17 (10): 594–603. doi: 10.1016.j.molmed.2011.05.013
45. Li J.-J., Zhang Y., Li S. et al. Large HDL Subfraction but not HDL-C is closely linked with risk factors, coronary severity and outcomes in a cohort of nontreated patients with stable coronary artery disease. A prospective observational study. Medicine, 2016; 95 (4): e2600.
46. Rohatgi A., Khera A., Berry J.D. et al. HDL cholesterol efflux capacity and incident cardiovascular events. N. Engl. J. Med., 2014; 371: 2383–2393.
47. Cahill L.E., Sacks F.M., Rimm E.B., Jensen M.K. Cholesterol efflux capacity, HDL cholesterol, and risk of coronary heart disease: a nested case-control study in men. J. Lipid Res., 2019; 60 (8): 1457–1464. doi: 10.1194/jlr/P093823
48. Khera A.V., Cuchel M., Llera-Moya M. et al. Cholesterol efflux capacity, high-density lipoprotein function, and atherosclerosis. N. Engl. J. Med., 2011; 364: 127–135. doi: 10.1056/NEJMoa1001689
49. Hernaez A., Soria-Florido M.T., Schroder H. et al. Role of HDL function and LDL atherogenicity on cardiovascular risk: A comprehensive examination. PLoS One, 2019; 14 (6): e0218533. doi: 10.1371/journal.pone.0218533